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Liapunov ([1], p.370) posed the problem of the stability of motion with respect
to a part of the variables, Malkin [2] in his remarks on Liapunov's theorems sta-
ted (without proof) certain conditions for carrying Liapunov's theorems over to
this problem, The concept of a function V (¢, %, .., 1) which is sign-definite
relative to z, ..., &, (m << n) was introduced in [3] and related theorems were
proved generalizing Liapunov's theorems [1]. Subsequently there appeared a
number of papers [4 - 15] which validated the possibility of applying the theorems
of Liapunov's second method (and their modifications and generalizations) for
this specific problem, A number of surveys [16 - 19] exist in the literature on
the stability theory of motion, however, there is a lack of surveys on stability
investigations with respect to a part of the variables, The present paper is an
attempt at filling this gap and gives a survey of the results in this area obtained
to date, In the paper we have introduced a unified notation and uniform formu-
lations which do not always coincide in form with those of the original authors
but which do completely reflect their sense,

1, Basic definitions, We consider a system of differential equations of pertur~
bed motion

xi.=X‘i(t’ LTI -vzn) t=1,...n

or, in vector form,
x =X (, x), Xt 00=0 (1.1)

We concern ourselves with the question of the stability of the unperturbed motion x = ¢
with respect to a part of the variables, to be specific, with respect to zy,..., z,, (m > 0,

n = m -+ p, p 2> 0).For brevity we denote these variables by ¥ = x; (i = i, ..., m)and
the rest by 25 = @m,j (J=1,..,n —m = p),i,e,, X = (Y1, ---s Ym» Z1» +--1 Zp)- We
introduce the notation
m 1," p l,/2 n 1/’3
= Jve)" = (R e) " v e =0y r e
Vi=1 i=1 vi=1

We assume that:
(a) in the region
t>0, |yl<H>0, 0<fz|<+ (1.2)
the right-hand sides of system (1,1) are continuous and satisfy the conditions for unique-
ness of the solution;
(b) the solutions of system (1,1) are z -extendable; this means [6] that any solution
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342 4.8.0ziraner and V.V.Rumiantsev

x (2) is defined for all ¢ > 0 for which || ¥ (8| < H.

By x = x (¢; n, Xxo) we denote the solution of system (1, 1) determined by the initial
conditions x (t,; g, Xg) = Xp.

Definition 1, The motion x = 0 is said to be:

(a) stable relative to z;, ..., 2, [1], or y-stable,if for anye > 0, ¢, > 0, no matter
how small & is, we can find § (g, {g) >V such that for every ¢ > ¢, || ¥(# to, Xo) {| <T €
follows from || x4 || << 6 ;

(b) y-stable uniformly in ¢, [5, 6, 9] it in Definition 1a we can choose & (¢) inde-
pendently of /4 for each e >0 ;

(c) asymptotically y -stable [3, 5, 6, 9]if itis y~-stable and for every ¢, > O there
exists A (fo) > O such that the solution x (¢; ¢, x¢) with || x4 [ < A satisfies the condition

G | 7 (6 to, x0) [ =0 (1.3)
{—roo
(here we say that the region || x || <{ A lies in the region of y -attraction of the point

= 0 for the initial instant ¢);

(d) asymptotically y -stable uniformly in {¢,, xo} [5, 6, 9]if it is y=-stable uniformly
in ¢, and there exists a number A, > 0 independent of t, such that condition (1, 3) is
fulfilled uniformly with respect to {t,, Xo} from the region

t 20, x| < Ao
i.e, for any ¢ > 0 we can find 7 (g) >> 0 such that for all ¢ > ¢4 + T, 1y (6 to, X) | <<
< ¢ follows from ¢, > 0, || x4 || < Aq &

(e) asymptotically y-stable in-the-large [9]if it is y-stable and condition (1,3) is
fulfilled for any t, > 0 and x,, i.e,, if the region of y-attraction of the point x = 0
is the whole space; here it is assumed that the right-hand sides of system (1, 1) satisfy
the Conditions (a) and (b) indicated for them, in the region

E20, 0| x|< A+ (1-4)

(f) exponentially-asymptotically y-stable [11] if there exists constants M > 0 and
a > 0 such that
Iy (& o, xa) | S M (fyoll +-llzoexp [—a(t — b)), t>t2=0 (1.5)
We shall be considering certain real single-valued functions V (¢, x),continuous and
possessing continuous partial derivatives 0V / 8t, 8V / dx; (i = 1, ..., n)in region (1,2),
satisfying the condition V (t, 0) =V, as well as their total time derivative V' (¢, x) taken
by virtue of system (1,1)

V) = avgt, x) LS ava(;t X ¥t x)

i=1

Definition 2, A function W (y1, ..., ¥p) = W (v), not depending explicitly on time,
is said to be positive-definite [1] if it is nonnegative in the region ||y|<CH and vanishes
if and only if ¥ = 0. A function V (¢, x) is said to be y -positive-definite [3] if there
exists a positive-definite function W (v), not depending explicitly on ¢, such that in region
1.2
@2 VW) (16)

Lemma 1, A function V (¢, x) is y-positive-definite if and only if there exists a
continuous function a (r), monotonically increasing for r & [0. H1 a (0) = 0 such that
in region (1,2) IS5, 6, 9]
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Vi, x)>a(lyD .7

Proof. The sufficiency of inequality (1, 7) is obvious, We prove the necessity, we
set b (r) = min [W (y): |i¥}j =r]. Then V (¢, x) > b (| y||) and, moreover, & (r) is con-
tinuous by virtue of the continuity of W.If b (r) increases monotonically on [0, H], then
we take a (r) = b (r), otherwise, we can take ¢ (r) = o (Nmin b (s): r < s << H],
where ¢ (r) is a function increasing monotonically on [0, H] and, moreover, U < ¢ <
«{ 1.From Lemma 1 it follows that inequalities (1, 8) and (1, 7) are equivalent,

Definition 3, The function ¥ {t, x) is called y-positive definite in the region
(1.4) if (1.8) is fulfilled in the whole of this region and for any e > 0

inf [ () : 6 <[y [ < oc] >0
This definition is equivalent to (1,7) with monotonically increasing function a (r) for
r € [0, ) ; the proof is analogous to that of Lemma 1,

Definition 4, A function V (¢, x)is said to be positive-definite in z;, ..., z), m <
Lk < n, (for the y -stability problem) if V (¢, x) > Wz, ,..., zx) in region (1,2), where
W (0, ..., 0) = 0 and for any ¢ > 0 B

inf{W(xl,.,., zp): 2 2>, 3,1yﬁ<H]>0

i=1
It is not difficult to prove the validity of

Lemma 2, Definition 4 is equivalent to the fulfillment in region (1, 2) of the in~
. K
equality ‘ Vs
v, x)/>/ak<2 :cf) )
f=1
with a continuous function a (r), monotonically increasing for r & [0, =), 2 (0) = 0.
Definition 5, A function V¥ (¢, x) admits of an infinitesimal upper bound in 3, ...,
vy m <k < nyif for any & > 0 we can find 8 (e) > 0 such that| V £, x)| < e follows
from :
t>0, 2-’312<621"'°°<xk+1»~--»mn<+°°
This signifies that =t k
V(t7x)—’0 as inz—»o
i=1
uniformly in ¢2> 0 and — o < Dy iqr ooy Tn < = v0,
Lemma 3, A function V¥ {{, x) admits of an infinitesimal upper bound in y (in z;,
ver Ty m S k<) if and only if there exists a function b (r) of the same type as a (1)
in Lemma 1, for which in region (1,2) 0]

[V, )<yl (1.8)
respectively,
. Y2
e i<e((F ) (L.9)
=1

In particular, ¥ (¢, x) admits of an infinitesimal upper bound in x if and only if

[V, x| <bo@xh (1.10)

2, Stability and {nstability, 1, Theorem 1, (1) If system (1.1) is such
that a function V (¢, x) satisfying inequality (1,7) exists, while V> < 0, then the motion
x =0 {is y-stable [3],

(2) If, furthermore, V satisfies inequality (1,10), then the Y -stability is uniform in
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to [5)
(3) If the conditions in Sect, 1 are fulfilled and V satisfies inequality (1, 8), then for
any & > (0 we can find 1 (€} > Osuch that from t, > 0, § yo }<n (0 <] 5, | < <) follows
1Y (& to, xoll << & for all ¢ > t, [8]; here it is necessary to fulfill the identities [12]

X, (¢, 0,2)=0 (i=1,..., m) (2.1)

Proof, (1) Foreverye > 0 {e < H), t, > O we can find § (e, ty) > 0 such that V (¢,
X0} < a (2} follows from || x,j < §. For the solution x = x {{; #,, X¢) with || x4 || <8 by virtue
of V' < 0 from the relation

V(@ x (& to, o)) =V (to, Xo)—i—S V' (1, X (T to, X0)) dT (2.2)
we obtain ¥ (¢, x (t; to, x0)) <V (b, 0} for ¢ > Thus
a (v (& to, Xo) N <V (&, x (85 to, X0)) <V (o, X0} < a (e) (2.3)

whence |y (£ 2o, xa} [ <€ for all ¢ > 1,
(2) When inequality (1,10) is fulfilled we can choose 8§ (g) = b1 (a (g)) independent
of t,(b~! is the inverse of function ). If |x,l < §,then
V (to, x0) < B (%o} <P (7 (@) =al(e)

(3)Foreach ¢ >0 weset 5 (e) = b1 (a(e)). I t; > 0, voll < 4, then V {fo. Xo) <
< a (g) and (2, 3) holds, whence | y (t; to, Xo) [ < & fort > 4,

Let us prove the indentities (2,1), We consider the solution x = x (¢; ty, 0, z,) for arbi-
trary ¢, > 0 and z,. By virtue of (1,8), ¥ (¢4, 0, 2o) = 0. Since Vv >0, while V < 0,
from (2, 2) follows V (¢, x {f; {4, 0, 2o)) = 0, whence

Iy (¢ to, 0, Zo) =0 (2.4)

Equality (2, 4) is equivalent to identities (2,1) (*), The theorem is proved,

Note, The requirement of an infinitesimal upper bound for the function Vv implies,
as also in the classical case [20], the uniformity of the y -stability, An analogous con-
clusion obtains also in the case of asymptotic y -stability,

In [3] it was shown that it is possible to apply to the y-stability problem Chetaev's
method [21] for constructing the function V in the form of a bundle of integrals of system
(1.1).

Theorem 2, [9]. If a function V (¢, x) satisfying inequality (1.7) exists and its
derivative Vi, << —c(lyd {2.5)
¢ (r) is a function of the type of « (r), then for any & & (0, H), ¢, > 0 we can find § (¢()>
> 0and T (t, &) > Osuch that for every X, with || X, || <C 8 there exists an instant ¢, &
(torto -+ T) for which || y (¢,; %o, xo) | < €.

Proof, According to Theorem 1, (1) for each ¢,> 0 there exists § (t,) > 0 such
that from | x, [ < & follows ||y (¢; Lo, Xo) | < H for all t > t, Let A (tg)== sup [V (tq, X):
=) < 8]. We set T (to, &) = A (to)/ ¢ (e).If & I y (¢ to, Xl << H for ¢ & (b, £o + T),
then from (2, 2) follows

0l a(e) < Vito-+T,x{ta+T; to, X)) KV (o, xo) —c () T <O

*) We obtain (2,1) by substituting the solution x == X {{; to, 0, z,) into system (1.1) and
by taking (2.4) and the arbitrariness of ¢, > 0 and of z, into account, The converse
follows from the uniqueness of the solution.
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which is impossible, The theorem is proved,

Let us consider certain generalizations of the results presented,

2, Theorem 3, [5], (1) If there exists a function V (t, x) possessing the prop.
erties;

(a) V {¢,0) =0, V (¢, x) is continuous at the point x = 0;

(b) V satisfies inequality (1, 7);

(c) V (¢, x (t; to o)) does not increase on any solution X (¢ £y, x;) as long as ||y (¢; £o,
Xo)ll < H,
then the motion x = 0 is y-stable,

(2) If, furthermore, V satisfies inequality (1.10), then the y -stability is uniform in
2o

To prove this we note that V (¢, x (t; 2, xo)) << V (¢, Xo) follows from condition (c),
The rest of the proof coincides with the proofs (1) and (2) of Theorem 1, The converse
assertion is valid for the second part of the theorem:

Theorem 4 [5] If the motion x = 0 is y-stable uniformly in :,, then there
exists a function V (¢, x) satisfying the conditions in part (2) of Theorem 3,

Proof, Weset V(t, x) =sup[||y (¢t +o; t, x)|:5> 0] Obviously, V (¢, x) 2> liyl|
and V (¢, x) < ¢ (J|x[]) (eis taken from the definition of uniform y -stability), Further,
we have

V (¢, X (8 to, Xo) = SUp |y (¢ + 63 2, X (£ o, %)) | = sup | ¥ (¢ +; to, Xo) |
a0 9z=)

Here we have made use of the uniqueness of the solution
X (£ T, X (T; 2o, Xo)) = X (£; %o, Xo) (26)
Let t1 >t: > to, then
V (£, X (23; b0, X0)) =sup [J¥ (t1+o; to, X0} : 6 2 0] <<
< sup [l ¥ (2 + o3 tey X0)||: 5 2> 0] = V (ta, X (t2; to, Xo))

Thus V (¢, x (2; to, Xo)) does not increase, The theorem is proved,
3. A somewhat different approach to the study of .y -stability was proposed in [4],
Suppose that we know beforehand the (arbitrarily crude) estimates

I zj (t; tov XO) | < "l, (t; to’ x(}) A] (t) (f = 1: LI } p) (27)

where 1; — 0 as || xy{| — O uniformly in ¢ & [t,, o) and the A; (¢) are positive functions
continuously differentiable for ¢ >> 0 , In system (1.1) we make the change of variables

g,=z, Ed;=z; (=1,...mj=m41,.. ,n) (2.8)

here the g; satisfy the system of equations
B =X B o B 0 Bad) (=1, m) @9
‘Ej' = ['_ Aj.Ej + Xj (t» E..lv LY Emv Em+1Am+17 L] EnAn)l / Aj (] =m + 1, ooy n)

The following is obvious,

Lemma 4, The y-stability of the motion x = u of system (1,1) is equivalent to
the Liapunov'stability of the motion § = 0 ot system (2, 9).

Theorem'5 [4], For the uniform in ¢, y-stability of the motion x = 0 of system
(1.1) it is necessary and sufficient that there exist a function V (¢, x) satisfying the con-
ditions:
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(a) V (¢, x) is defined in the region

m n

Siept 3 @l ap<n>0, 30
i=1 i=m-1
(b) for any ¢, > 0 we can find €, > 0 such that from
m n
Z 22 >C2 2 (x5 432 > c,?
i=1 j=m-+1

follows V (t, x) > Cy (Ci2 < 1%/ 2);
(c) for any y; > 0 we can find v, > 0 such that V (¢, x) <71 if only

m n
Z‘ 22 < T 2 (@1 A2 <1y
j==1 j=m+1

(d) the function V does not increase along the solutions of system (1.1), on which it
is still defined,

Proof, Sufficiency, Under the change of arguments of the function ¥ (¢, x) by
formulas (2, 8) we obtain the function V (¢, g) satisfying the conditions of the theorem
given in [4] (p.29), therefore the motion & = 0 of system (2, 9) is stable uniformly in
to- By virtue of Lemma 4 the motion x = 0 of system (1.1) is y=-stable uniformly
in t,.

Necessity, From the uniform in ¢, y-stability of the motion x = 0 of system (1,1)
it follows, according to Lemma 4, that the motion & = 0 of system (2, 9) is stable uni-
formly in ?,. Having taken for system (2, 9) a function V (¢, ) in accordance with the
theorem in [4] (p. 29) and having replaced its arguments by formulas (2, 8), we obtain the
required function ¥V (¢, x). The theorem is proved,

Corollary [4]. If the estimates (2,7) are not known beforehand, but there exists a
function V satisfying the hypotheses of Theorem 5 (in which now the 4; (¢) are some
functions continuously differentiable and positive for ¢ > 0 )then the motionx = 0 of sys=~
tem (1,1) is y -stable uniformly in ¢, and the estimates (2, 7) hold,

4, Let V (1, x) satisfy the differential inequality {6, 22]

i, x) <ot Vg, x) (2.10)
in which © (¢, v) is a function continuous for ¢>> 0, v >> 0 and the congruence equation
v = o, V) (e, 0)=0) (2.11)

has the unique solution » = v (¢; o, vo) satisfying the initial condition v (to: to, vp) = v,
for each point (¢, vo) of the domain,

Theorem 6, [6]. If a function V (¢, x) exists satisfying inequalities (1, 7) and (2,10)
and, furthermore,

(1) the solution v = 0 of Eq, (2,11) is stable, then the motion x = 0 of system (1,1)
is y -stable;

(2) V satisfies inequality (1.10) and solution v = 0 of Eq, (2,11) is stable uniformly
in ¢,, then the motion x == 0 is y-stable uniformly in .

Proof, From (2,10) it follows [23] that when V (¢4, X¢) < %o,

V (L, x (& to, X0)) v (E to, 20), t>1o (2.12)
(1) For any e > 0, ¢, > 0 there exists, by virtue of the stability of the solution v = 0,
7 (e, to)> 0 such that from vy, < n follows v (¢; Lo, Yg) < a (&) for all ¢ > #4. Let
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8 (n, tg) = 8 (g, ty) > 0 be such that V (tg, Xo) < M if || X¢ || < 6. Then from (2,12) and
(1.7) follows, for t 2 to, || Xo || <C &

a(|y(t to, Xo) NV, x(t; to, X)) v (¢ lo, )< a (e)
whence |y (; 2o, Xo0) [| < e.
(2) In this case 7 (&) > 0 does not depend on tg; but then also § (g) = b2 (n (g)) does
not depend on ty,. The theorem is proved,
The converse assertion is valid for the first part of Theorem 6, Together with system
(1.1) we consider the system [12]
=X (. x*) @ (y) =X* (¢ x*) (213)

in which @ is a scalar continuously-differentiable function, 0 ¢ {1 and

1 for [y*I<kh

(P(y*)~_-{ 0 for h<H<|y|<H

Let x* = x* (; 24, %0*) be the solution of system (2.13) with the initial conditions x*
(to; tos Xo*) = X,*. We assume that solution of system (2,13) is z* -extendible,

By ¥, and ¥, we denote the derivatives of function ¥ by virtue of systems (1,1)
and (2,13) respectively, These systems coincide in the region

120, [ylI<hk 0gfzi<oo (2.14)
In the region (2,14) we seek the function V (¢, x) among the solutions of the functional
equation [6] v (1)- ¢, = V(z)' (t, x) =o0(t, V(t, x)) (2.15)

We assume that the continuous derivatives do / dv, 9X; / dz; (i, } = 1,.., n) exist, The sol-
ution of Eq, (2,15), satisfying the condition ¥ (0, x) = p (x) (u is a differentiable fun-
ction), is given by the formula [6]
Vi, x)=uo(t 0, u(x*(0;¢ x))) (2.16)

By virtue of the differentiability of the solutions of system (2.13) and of Eq, (2,11) with
respect to the initial conditions, V has the continuous derivatives 8V / dt, dV [ dz; (i =
=1, ... n)(*). Let the function o satisfy the condition —

A) all solutions of Eq, (2,11) are defined for ¢t &€ [0, ) and the function v (¢ 0, ¥o)
is itive-definite,

pes v (15 0, u) > (o) (2.47)

Theorem 7 [6]). If the motion x = 0 of system (1,1) is y-stable, then for any
function @ satisfying condition (A) there exists a function V (¢, x) satisfying inequality
(1,7) and Eq, (2,15).

Proof, It is sufficient to prove that under a suitable choice of the function p (x) the
function V defined by formula (2,16) will satisfy inequality (1,7), Let p (x) be such that

(%) 3> p* (I x ) (2.18)
Using method given in [24, 25] we can show [12] that
0L x)[=v(yh ) (2.19)

*) If we waive the smoothness of the functions mentioned, ther V proves to be not diff-
erentiable, but the derivative dV (¢, x (t; t, Xq)) / 8¢ will exist [6],
*) A (), u* (r)and v (r) are functions of the type of a (r).
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follows from the condition that the motion x = 0 is y -stable, From (2.17)—(2,19)
ensues (1,7) with a (r) = A (u* (v (r)). The theorem is proved,

5. Let us consider the application of a vector-valued function V. The results obtained
in [26] for m = n were carried over (without proof) to the case m < n in [9], Let o, ¥,
f be vectors in the % -dimensional space R#, We write @ < ¥ if @; < P; (i=1, ..,
..+, k). By definition the function f; (¢, ®) does not decrease with respect to @;, ..., By »
Opqree @ 1f 5 (6, 0%) <fg (1, @**%) for 0 = 0,%, o< @) (i=1,.,8—1,
s+ 1, ..,k
We introduce the following conditions:

1. There exists a vector-valued function V = (Vy, ..., V) such that

1) V and V' are continuous, V (¢,0) = V' (¢,0) = 0;

2) Vi>0, ..., V; >0 for certain® , 1 < { < £k, while

Vit +...+V e, x)>a(yh (2.20)
3) the derivative V' satisfies the inequality
Vo, x) << (2, V(X))
11, 1) The vector-valued function f (¢, V) is defined and is continuous in the region
t>0, [VI<R

where R=occ or R >sup||V{E x)|: ¢t =0, |ylI<<H];
2) Each of the functions /, (s = 1, ..., k) does not decrease with respect to ¥y, ...,

Vs—l’ Vs+1' veeey Vs
3) f(r,0=0.
1l, let & = (wy, ..., w). Consider the congruence system

o =f( o) (2.21)

Under the conditions w;, > 0, ..., @p > 0 the solution @ = U of system (2, 21) is:

1) o -stable;

2) o -stable uniformly in t4;

3) asymptotically «-stable;

4) asymptotically a -stable uniformly in {fp, ).

IV, V (¢, x) — O uniformly in >0 as x — 0.

Theorem 8 [9]. (1) If conditions I, II and III-1 are fulfilled, then the motion

= 0 is y-=~stable,

(2) If conditions I, II, III-2 and IV are fulfilled, then the motion x == 0 is y =stable
uniformly in ¢,

Proof [26] (1)For any & > 0, ¢, >0 we can find A (g, ¢,) > 0 such that from

k
Ml ogl <A
s=1
(for ®g =0, ..., &p > 0) follows:
l
Dot e)|<aE ()

8=]

*) 0 = 0 (t; {4, ) is the solution of system (2, 21), satisfying the initial conditions
o (to; toy @) = M.
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for all ¢ > 1,.By virtue of I1-2 the theorem of [23] is applicable, according to which
there exists the upper solution o' (f; fg, ®,) with the same initial conditions, satisfying
for t > 1, the inequality i
Dottt 0)i<a®
==}
With respect to A and ¢, we can select § (A, t,) = § (g, £p) > 0 such that from || x, [| <<
< 8 followss k .
D1V x) 1<
=1
Let us show that [[ ¥ (#; tes Xo) || <C & for ¢ 2> 8y, if [| X0 || <C 8. We assume that there exist
t, > toand x, with || x, || < 8 for which || y (¢ 25 x,) || < & for ¢t & [¢, 2,), but

[y (e to x) =2 (2.22)
We set @, = V {t, x,) (here @1, >0, ..., w, > 0). By the choice of &

13
Ao, <A
8=1
consequently, for ¢ & [y, £} C [ty o)
1

Dok ity @) <ae)
gaml
The functions ¥, (¢,” x (t; 2o X,)) are continuously differentiable in ¢ on [t,, £, -+ At)

(At > 0 is sufficiently small), By virtue of I~3,
VO, x (8 tos %) (8 V (X (8 20, X))
then, according to the theorem of [23],
V, @, x(& by x*)) g ma‘“ (t; ty (o‘)
Hence

l l
a QY (&t DD D) Valt, X (5 10, X)) < D) 05 (85 1o, 0) < a(e) (2.23)
8wz} &=1

Consequently, {| y (& £, %o} | < & for all t& [4, ¢,] which contradicts equality (2, 22)
when i= ¢,

(2) In this case A and 8 may be chosen independent of #. The theorem is proved,

6. In the problem of the preservation of stability relative to a part of the variables
[6], together with system (1,1) we can consider the system

x =X, x)+R{ x) R 0=0) (2.24)
satisfying the same conditions as does system (1,1), Let V(l) and Vi, be the derivatives

of function. ¥V by virtue of (1,1) and (2, 24),
Theorem 9 6], If a function V (i, x) satisfies inequality (1, 7) and the Lipschitz

condition 1V (¢, x1)— V(¢ x2) | < Ljx1— xa) (2.29)
while ¥ ,, < 0, then we can find a function d (r) (of the typeof a (r)} such that from

the inequalities IR¢ 0I<e®ddyd (2.26)
| [o@ar<+o (2.27)

0
follows the uniform in ¢ y-stability of the motion x = 0 of system (2, 24),
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Proof, By virtue of (2) of Theorem 1 the motion x = 0 of system (1,1) is y -stable
uniformly in 4, and we can talk about the preservation of stability, From (2,25) and
(2. 28) follows:

Vi & )<V 0 +Lo@®d (vl <Lea(ivh (2.28)
whence, by virtue of (1.7), V,,, (¢, x) < L @ (¢) d (a7 (V (¢, x))). If the function d (a~
(r)) = p {(r) is such that i

S?‘GT =
4] .

then the solution v = 0 of the equation v = L ¢ (2) p (v) is stable uniformly in ¢. Hence
follows the required result if we set, for example, 4 (r) = q (r).

7. In order to detect the y-instability of the motion x = 0 of system (1,1) it is su-
fficient to observe only one trajectory emerging onto the surface |y =K for arbitra~
rily small | x,| [21], The set of points (2, x) of region (1,2) for which ¥V (¢, x) > 0 is
called the region V >0 [21],

Definition 6 [211 A function U (¢, x) is said to be positive-definite in the reg.
ion ¥ > 0 if for arbitrarily small & > 0, there exists § () >0 such that, for
every point (¢, x) of region (1,2), satisfying the condition V (¢, x) >¢, the inequality
U (¢t x) >0 is fulfilled,

As was noted in [3, 14], Chetaev’s theorem [21] on instability can be successfully
applied to the y ~instability problem:

Theorem 10 [21]. If a function V (¢, x) is bounded in the region V > 0, existing
for any ¢> 0 and for arbitrarily small | x|, and if V" is a positive-definite function
in the region V > 0, then the motion x == ¢ 15 y -unstable,

The statement and the proof of this theorem coincide with those of Chetaev's theorem
[21] with the sole difference that the region considered in 21} was 1> 0, |x | < H>
> 0, while in Theorem 10 (and in Definition 8) we consider the region {(1,2), The con-
ditions of Theorem 10 ensure chat the corresponding solutions will leave region (1,2) in
a time not exceeding (L — v) /1’ [21], starting from the instant {,. Since this time is
finite, the solutions go onto the surface || y | = # (see condition b of Sect, 1),

Note, Theorem 10 remains valid [14] if the function satisfying the hypotheses of
Theorem 10is V == V (¢, y).

Theorem 11 [13], If: (1) system (1,1) is autonomous and all its solutions starting
in some neighborhood of the point x = ¢ are z -bounded;

(2) the function ¥ (x) is such that: ¥ (0) = 0 and in any neighborhood of the origin
there exists a point X tor which V (x) < 0;

(3) Vix)=0for x€M, V{x)<0 for xgM (2.29)

where M is the set not containing entire trajectories besides x = 0, then the motion
x = 0 is y-unstable,

Proof, Assume the contrary: let the motion x == 0 be y -stable, Having chosen
xo from the conditions V (x,) < 0, |y (0, x¢) | < H for > 0, we obtain, by virtue

of (1) and (2), I 0, x| >0>0, 130 (2.30)

The set I'* of the @ -limit points of the solution x (2 0, x,) is nonempty and invariant
[27], moreover, I'* C M [28, 29) By virtue of (2,30), I'* does not contain the point
x = 0.Consequently, the set M contains a trajectory other than x = 0, which is imposs-
ible, The theorem is proved,
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This result generalizes a theorem of Krasovskii [20,

Theorem 12 [13), If conditions 1 and 2 of Theorem 11, (2, 29) and

4) V (0, z) > 0 for any z;

5) the set {x: y = 0) is invariant;

6) the set M\ {x: y = 0} does not contain entire trajectories, then the motion x = 0
is y-unstable,

Proof, We assume the contrary and we choose x, as in the proof of Theorem 11,
The set T* is not empty, Let

lim X (tn; 0, X0) =X, ET™.

N0

If
tlim ly (0, x) | =0

then y, = 0 and, by passing to the limit in the inequalities
tlim V(x(@0,x0)) <V (%) <0

we obtain 0 < V (0, z,) < V (x,) < 0, which is impossible, Consequently,|| ¥ (tn; 0, Xo)
j| 1 > 0 for some sequence t, — co and we can take y, == 0. According to 5, || ¥ (%
0, x,) || &= O for all ¢>> 0, whence, by virtue of the invariance of I'* and of the prop-
erty I'" C M follows x (¢; 0, x,) & M\ {x: y = 0} for any ¢ > 0, which is impossible,
The theorem is proved,

3., Asymptotic stability, 1, Theorem 13 [10, 14] If a function ¥ (¢, x)
satisfying inequality (1, 7) exists and if for any z, > 0 we can find A (#,) > 0 such that
from || %o || < A follows ¥ (2, x (2; 2y, %))|0(*) as ¢t — oo, then the motion x = 0 is asym-
ptotically y-stable,

This assertion follows from the y -stability, the inequality (1,7) and the conditionV |0,

Theorem 14 [10, 14], If a function ¥ (¢, x) is such that

Vi, ) >0 a(yl
for a function 6 (#) monotonically increasing to infinity, 8 (0) = 1, while V' <0, then
the motion x = 0 is asymptotically y -stable,
This result generalizes a theorem of Chetaev [21], For each pair of numbers £, > v,
6’ > 0 we consider the set [9]

E (to, &) = {(t, X): £ 3> to, X = X (£; to, o), [ Xo[| << &'}

Theorem 15 [9], If a function V (¢, x) satisfying the hypotheses of Theorem 2

exists and if for any ¢, > 0 we can find 8 (%) > 0 and M(#) > 0 such that
Y@ 0I<M  for (¢, x) = E (b, &) (3.1)
then the motion x = 0 is asymptotically Yy -stable,

Proof, By virtue of Theorem 1 (1), for every > 0, #, > 0 we can find § (g,%), 0<
< 8§ < 8, such that from || xq || <C & follows || ¥ (& 2 Xp) || < & for ¢ > . Let us show
that Lim | y (%4, Xo)|| = U as t— oo if || Xo || < 8. Assume the contrary; let there exist
a point X, with||x.j| << 9,2 number [ >0 and a sequence #; — oo, {; — tx-1>a >0,
x =1, 2, 3,.., such that | ¥ {ti%, X,.) |l > I. By virtue of (3,1) we can choose

*) The notation " ¥ | 0" means that " ¥ tends to zero, decreasing monotonically (in
the wide sense)”,
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B, V< p< a2 forwhichl /2|y (4 to x) || < Efor it [ty — B, tx + Bl, &k =
=1, 2, 3,... . Here, on the basis of (2, 5), from (2,2) follows
Rt
OV (b 4B, x (8 48 2o, ) <V (toy x,) + Z 5. Vi (r, x (T 0, X)) dT <
i=1%,-p
<V (to, x,) — 2KBe (1 /2)
which is impossible for & sufficiently large, The theorem is proved,

Theorem 15 generalizes a theorem given in [30], By an example it is shown in [12]
that when m <{ n Theorem 15 is not invertible even in the case of asymptotic y ~stab-
ility uniform in {¢,, %o}. It can be shown [31] that theorem given in [30] (i.e., Theorem
15 with m == n) is also not invertible in the general case,

2, Theorem 16 [32], If a function V (¢, x) satisfies inequalities (1, 7) and (1, 9),

i.e., k .
alyh <V, XS<6(<213)/'>, m<k<n (3.2)
and its derivative =1 .
v (¢, x) —c (( Z xiz)‘/z> (33)

i=1
then the motion x = 0 is asymptotically y -stable,
Proof, Foreverye >0, t, > 0 we select § (e, £,) > 0 in accordance with Theorem
1 (1), We show that from || xo || <C 6 follows lim V (2, x (& #g, X)) = 0 as £ — oo, If we
assume the contrary, then by virtue of V' < 0 we have V (¢, x (% t, X)) > Vo > 0.
On the basis of this, from (3,2) and (3, 3) we conclude that

k 1/2
(Z RICEN xo>)/ 2V, VU x (G, %) S — c (671 (V) 34
i=1
Using (3,4) and (2,2) we obtain
U V (it x (8 to, X0)) <V (Po, Xo) — ¢ (71 (V) (¢ — to)

which is impossible for ¢ sufficiently large, Thus, lim V (¢, x (8%, X)) = 0 as 1 — oo,
The result required follows from Theorem 13,

Definition 7 (cf, [12]), The solutions of system (1,1) possess property (R) if for
some & >0 and for any & > 0 we can find 7 (e) > 0 such that from

k
020, D2, < 8 (—oo < zjg < Ao0y [=kA1,.. ., n)
i=1

follows ||y (¢; Zo, Xo) || < € for all £ >t T.

Analogous to [12] we can prove

Theorem 17, For the existence of a function V satisfying the hypotheses of Theo-
rem 16 it is necessary that the solutions of system (1,1) possess property (R) and that the
identities

X (60, 0,74,,...,2)=0 G=1,.... k)

be fulfilled,

If £ = m,while X; and 0X; / 8x; (i, ] = 1,..., n) are continuous and bounded in region
(1.2), then these conditions are sufficient [12] for the existence of a functior V satisfy-

ing the hypotheses of Theorem 16, Theorem 16 is noninvertible when & > m which
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follows from the example in [12],
3. Theorem 18 [9]), If a function V (¢, x) satisfying inequalities (1, 7) and (1.10)

exists, i.e., a(yD <Vt 0 <b(x] 3-9)

the derivative V' <0 and V (¢, x) — 0 uniformly as V" (¢, x) — 0 (*), then the motion
x = ('is asymptotically y -stable uniformly in {z, X}

Proof. If £ >0, | xy|<C Ag = b1 (a (H)), then the inequality |y (& Zo, Xo) | < H
is valid for any ¢ > ¢, , Forevery &, 0 < e < H we can find §' () > 0 such that
V (, x) < a (e) follows from | V' (¢, x) | < 6', We set T (e) = 2a (e)/8’ (¢). If we admit
that | V' (v, x (15 9, X)) | => & () for T & (25, 2% + Tand | x4 | < Ay, then from (2, 2) we
obtain

0KV (o4 T, x(to+T; to, x0)) S V (2o, Xo) —2a(e) Sale) —2a() <0

which is impossible, Thus, for some ¢, & (4, t, + T) we have | V' (t,, x (2,; fo Xq)) | <
<6’ and, consequently, V (t,, x (£,; to, X)) < a (€). But then for ¢ > 1,

a(|y (& to, X)) SV (2, X (t; to, X0)) SV (E4s X (t4s Loy X0)) < @ (8)

whence [y (& #, Xo) ] <€ forall > ¢, + I > ¢,. The theorem is proved,
4, We consider some generalizations (see Sect, 2, subsection 2),
Theorem 19 [5], If there exists a function V (¢, x) pussessing the properties:
a) V(¢ 0)=0, V(¢ x) is continuous at the point x = U;
b) V satisfies inequality (1.7);
©) DHV (8, X (8; to, X0)) << — ¢ (V (£, X (£; to X0)))  (**) (3.8)

then the motion x == 0 is asymptotically y -stable,

Proof, Having chosen § (g, #,) > 0, in accordance with Theorem 1 (1) we get that
the limit lim V (¢, x (8 %, X)) = V, > 0 as ¢ oo exists for | xo | < 8 . If we assume
that V, > 0, then

DV (8, X (£ to, X0) << — ¢ (Vig)
follows from (3, 6), Integrating this relation we find
0V (¢, X (t; to, x0)) < V (fo, Xo) — ¢ (V) (t — ta)

which is impossible for ¢ sufficiently large, Thus, ¥V, = 0, which is what we had to
prove,

Theorem 20 [5) If a function V (¢, x) satisfying conditions a), b) of Theorem
19 and inequality (1,10) exists and, moreover,

DV (8, X (2 10, Xopy < — ¢ ([[X (¢ 2o, Xo) ||) 3.7

then the motion x = 0 is asymptotically y-stable uniformly in {fos Xo}-
Proof, Inequalities (3, 5) hold by hypothesis. Let e > 0 be given, If & (g) = b1
(a (8)), then for | %ol << &

a (1Y (& to, X0) 1) <V (¢, X (8 to, X0)) < V (20, X0) < B ([ %0]) < 2 ()

*) This means that for any ¢ >> 0 we can find § (g) > 0 such that| V" (¢, x) | < & follows
from ¥V (¢, x) < e.
*) The quantity D*V (¢, x (t; to, Xo)) = hm [V(t+hx (-4 hito, X)) —V(E x(tto, X0)] [k

is Dini's right upper-derived number [33 34] of the function V (¢, x (t; £, xo)).
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whence [y (& #p Xo) I << & for t2> 5. We set Ay = 8 (H), T (e) = b (Ag)/ ¢ (8 (e)) and
we let 1 xg << Ay 2, > 0. If we assume that Ix (& 2, %) |1 > 6 (€) for all t € (2, 80 +T)»
then, by integrating (3, 7) we obtain

0V ito+T,x(to+ T; to, Xa)) TV (b0, X0) —c (B (e)) T' < b(A) —c (B (&) T =0

which is impossible, Consequently, there exists an instant ¢, & (%, %, 4 T) for which
|| ® (243 20s Xo) | << 6 (8). But in such a case ||y (& t, o)l << e for all t2>> g+ 7T >tes
which is what we had to prove,

5., Theorem 21 [4], In order for the motion x = 0 to be y-stable uniformly in
¢ and asymptotically y -stable, it is necessary and sufficient that there exist a funct-
ion V (¢, x) satisfying the hypotheses of Theorem 5 and V (2, x (& 2, xo)) | 0.

Proof, 1)Sufficiency, The hypotheses of Theorem § are fulfilled, From v | 0
it follows that |y (% &, X¢) || — 0 as ¢ — oo if [ x4 is sufficiently small,

2) Necessity, From the hypotheses it follows that there exists a function V (¢, x)
satisfying the hypotheses of Theorem 5, By the construction of the function V ([4], p.29)
and by virtue of the asymptotic y-stability, V (¢, x (& fo Xo)) | 0.

6. We consider the application of the differential inequalities (see Sect, 2, subsection
4)

Theorem 22 [6], If a-function V (1, x) exists satisfying inequalities (2,.10) and (1.7)
and, furthermore, if:

1) the solution » = 0 of Eq, (2.11) is asymptotically stable, then the motion x = 0
of system (1,1) is asymptotically y-stable;

2) V satisfies inequality (1,10) and the solution v = 0 of Eq, (2,11) is asymptotically
stable uniformly in {i,, v,}, then the motion x = 0 of system (1,1) is asymptotically y
=stable uniformly in {Z, X¢}.

Proof, 1) From (2,12) and (1,7) it follows that a (| y (% 2 Xo) ) << v (& for Vo)e
Since lim v (& &, v,) = 0 as - coalso im ]y (& 2o, xo) || = 0 if | xo ] is sufficiently
small, '

2) Let mo > 0and T (a (¢)) = T (e) be the number appearing in the definition of the
uniform asymptotic stability of the solution v = 0 of Eq, (2,11), We choose A, >0
from the condition b (Ay) < m,. Then, for | xo | < Ag, 12> ¢, + T we have

a(lly ¢ to, %)) SV (2, X (£ to, X0)) S v (¢ bo, v0) < @ (8)
whence |y (& £, X,)] < & The theorem is proved,

Let us consider a vector-valued function V (see Sect, 2, subsection 2),

Theorem 23 [9], 1) If conditions I, II and I1I-3) are fulfilled, then the motion

= 0 is asymptotically y-stable,

2) If conditions I, II, 1II-4) and IV are fulfilled, then the motion x = 0 is asymptot-
ically y-stable uniformlyt in {2y, xo}.

Proof, 1)Since ., 2 @g* (2, gy ) = 0, then (1,3) follows from (2,23) if | Xo|

>0 g==x]

is sufficiently small.t
2) In this case relation (1, 3) is fulfilled uniformly in {¢, x,}. The theorem is proved.
7. In this subsection V) and ¥, denote the derivatives of the function V relative
to systems (1,1) and (2, 24) (see Sect, 2, subsection 6),
Theorem 24 [6], If there exists a bounded function V (¢, x) satisfying inequality
(1.7) and the Lipschitz condition (2, 25) and, moreover, if Vo (¢ x) < — (| x]]), then



Method of Liapunov functions in a stability problem 355

we can find a function 4 (r) such that from the conditions (2, 26) and (3, 8),
tott
{—t-{»a j q:(r)dr}f;j:—ao as t-s00 {a>0) (3.8
ts
follows the uniform in {¢,, x,) asymptotic y-stability of motion x = 0 of system
(2.24),
Proof, Under the conditions imposed on ¥V we can construct [22] a function W (¢, x)

such that W¢,0=0, p{yD<sWx)<<|x]

p (r) is a function of the type of a (r) ; furthermore, W satisfies a Lipschitz condition in
X with a Lipschitz constant equal to unity,
Hence, by virtue of (2.26) and (3, 9) follows

W .0 <—WEx)+o@d (Iy])
Let d(r) < Cp (), 0< € < a. Then
Wig (6, %) < [— 1+ ag ()] W (¢, %) (3.10)

On the basis of (3, 8) and of item 2) of Theorem 22, from (3,10) we conclude that the
motion x = 0 of system (2,24) is asymptotically y-stable uniformly in {#5 X¢}. The
theorem is proved,

8, Let us consider criteria based on functions having a sign-constant derivative [20,
29, 35, 28], In this subsection we assume that system (1.1) is autonomous and, conse ~
quently, its solutions possess the group property

X (1 to, %0} = X (£ -+ Ti I - T Xo) 3.41)

and, moreover, that all its solutions starting in some neighborhood of the point x =0
are bounded,

Theorem 25 [10, 13, 14], If a function V¥ (x) is such that V (x) 2> a (]| ¥ H), while
V" satisfies condition (2, 29) where M is the set of points {x} not containing entire tra-
jectories, and furthermore if x = 0, then the motion x == ¢ is asymptotically y-stable,

Proof [10, 14] Having been given a number &, 0 < 8 < H, we choose § (g} > 0
in accordance with item 2) of Theorem 1, Let us show that from {] x4 || <C 0 it follows
thatlim ¥V (x (# %, xo)) == 0 as #-- ~o. Assuming that this is false, by virtue of V"0
we obtain V(X (8 to, X)) > Ve >0 (3.42)
The solution x (#; %, X,), being bounded by hypothesis, has a limit point X! X (2, + k;
gy Xg) — X, k= Ky, kg, kgyeiey by — o0, ¥ = const >0 by the continuity of Vv {(Xe) = Ve
Since the solution x {#; #, X¢)does not lie wholly in the set M, for some 7 >> £, we have
V (x (T; 1, X4)) < V. Since x (2 + kv; #y, X4) — X4, by the theorem on the continuous
dependence of a solution on the initial conditions and by virtue of the continuity of fun-
ction ¥V there exists for the number T > 0 and N > 0 such that from k; > N follows

v {x (T; o, X (to —*‘ ki't; i, Xo))'] < V* (3.13}

From (3,11) and from the property of uniqueness of (2, 6) follows: B4
14)

X (T toy X (to - kyv; to, X0)) == x (T + k;v; o+ kv, X (20 + k.75 £g, Xo) =X (T k05 80, X0)

Substituting (3, 14) into (3, 13) we obtain V (x (T 4 ki7; fy, Xo)) < Vi, which contradicts
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(3.12), Thus, V, = 0, which is what we had to prove,

Note, Itcan be shown [15] that when the hypotheses of Theorem 25 are fulfilled
the asymptotic y -stability is uniform in {Z, X}

Theorem 26 [13], If a function V (x) is such that ¥ (x) > a (|| 'y ||), while V"satisfies
condition (2,29), and moreover the set{x: y = 0} is invariant while M \ {x:y = 0}
does not contain entire trajectories, then the motion x = 0 is asymptotically y -stable,

The proof [13] is based on the properties of the @-1limit points of dynamic systems
and is carried out according to the same plan as for the proofs of Theorems 11 and 12,

9, Theorem 27 [9], If there exists a function V (¢, x) satisfying conditions (1, 7)
and (2. 5) (in the sense of Definition 3) in the region (1.4) and if for any ¢, > 0,A > 0
we can find M (¢, A) > 0 such that

Y@ x)IKM for (t,X)E E (Lo, A) (3.15)
then the motion x = 0 is asymptotically y-stable in-the-large,

Proof, The conditions of item 1) of Theorem 1 are fulfilled, therefore we need to
prove only that lim || y (2 #, X,) |[= 0 as ¢ — o for any x, and % > 0. Assume the con-
trary: let there exist a number I > 0 and a sequence ¢ — oo, ¢y — g1 > 0 >0, k=

=1,2,3,...,such that ||y (tx; %, X4)|| > for some x, and ¢, > 0. We denote ||x,|| = A;
from (3.15) there follows the existence of a number §, 0 < < @/2, such that || y (%2,
x¢) || > 12 when ¢t [ty — B, ty + Bl, k=1,2,3,... . By virtue of (2. 5), from(2.2)

follows K 4B

OVt +Bix e+ Bt x) <Vax)+3 | Vimx@monxdr<
i=1t,—8
<V (to, x,) — 2kBe (11 2)
which is impossible for 4 sufficiently large, The theorem is proved,

Condition (3,15) permits us to relinquish the requirement of a strong infinitesimal
upper bound and of an infinite lower bound [25] for the function ¥, however, in this case
the uniformity of the asymptotic y-stability is not guaranteed, For comparison we offer
the following generalization of the theorem appearing in [20, 36, 37, 29] on asymptotic
stability in-the-large:

Theorem 28 (*), If a function V¥ exists in region (1. 4), satisfying conditions (3, 2)
and (3. 3) and, moreover, if

k
Vi, x)=3+oo as Z z2— 4 (3.16)
i=1
then the motion x = 0 is asymptotically y -stable in-the-large; here |y (3 2, Xo) [ — 0
as t-» oo uniformly in
{t0> 01 (zlov-"r xkﬁ) € K, I x 0 I < + o (i =k + 1a---v n)}’

where K is an arbitrary compactum of the space {z;,..., Zx}, the solution of system (1,1)
possesses property (ft), and

X, (8,0,...,0,24,...,2,)=0 i=1,...,8 (3.17)

Proof, The asymptotic y -stability, property (R) and identity (3,17) follow from
Theorems 16 and 17, Let compactum K be given, We denote

*) This theorem has been proven by A, S, Oziraner,



Method of Liapunov functions in a stability problem 351

bo = max {b ((é :rf)l[’) R €2 SN ,xk)EK]

i=1

By virtue of (3.16) there exists R > 0 such that

k
V) >b  for D) 22> R?
=1
Consequently, .
Z z2 (¢ to, Xo) < A2 for 1>t
i=1
if 020, (tw,..., 5 JEK, |54 < o0 Ge=b-1,...,0)

From the conditions imposed on the function V it follows (c, f, items 2) and 3) of
Theorem 1) that for any ¢ > 0 we can find § (e) > 0 such that |y ( t, xp) | < & for
all 1> ¢, if only E
020, D 28 |z5l<oo (=k+1,...,n)

=1

We set T (e} = 2bo / ¢ (0 (8)) and we let (z1,..., 2, ) E K. If we assume that
k
2} z2(tty %0) > 8% (e)  for t& (to, o+ T)

is=l
then from (2, 2) we obtain
O Vitat Tox(to-k T to, x0) <V (to,Xo) —c SN T bo—cGENT <O
which is impossible, Consequently, there exists an instant ¢, & (4, Y -+ 7) for which
2 22 (s to, X0) < 82 (€)
i=1
But then || ¥ {(; to, Xo) [<C e for t >+ T > 1. The theorem is proved,

Note, If in Theorems 25 and 26 we additionally require a ({y [} » 0 as 1 ¥ | — o
then the motion x == 0 is asymptotically ¥ -stable in-the-large [13],

10, Let there be given the system of equations of perturbed motion of a controlled
system .
Y x =X (¢, x,u) (= (a,...,u)) {3.18}
whose right-hand sides are defined and are continuous in the region

120, |[YISH>O, 0]z]|< 4+, Olufj<+ (3.19)

We seek u in the form u = wu (¢, x); here it is assumed that the function u {4, x) is defi-
ned and is continuous in region (1,2), while for u = u (¢, x) the system (3, 18) satisfies
restrictions imposed on system (1,1) and in addition

X (¢, 0,0)=0, u(,0)=0

The control performance index is taken to be the condition that the integral

J-_-ym(t,x[z],um)dz
ts

is minimum, Here (¢, X, u) >> 0 is a scalar function continuous in region (3,19), x [¢]
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is the solution of system (3,18) for u == u (¢, x), u[#}) = u (¢, x [t]). The optimal y -
stabilization problem [10, 32] consists of finding the function u = u® (¢, x} which ensures
the asymptotic y-stability of the motion x == 0, where the inequality

o

f o (5, x°[£], u [¢]) dt < j © (£, X* [£], u* [¢]) dt

to o

for 4> 0, | x [£] ] <A, A = const > 0,must be satisfied for any other function u = u*
{¢, x) having the same property, We introduce the notation [35]

B[Vtx,u]__+2_X(txu)+m(txu) (3.20)
i==]

Theorem 29 [10, 32], If there exist a function V° (¢, X} satisfying inequalities
(1. 7) and (1, 8) (respectively, inequalities {1, 7) and (1.10)) and a functionu = u°® (¢, x}
for which:

D wi,xy=—af, x, v, XN —c{]y]) (respectively, W (t,x) = — o (t, %3 u°
B xS =—cuxn)

2) B(Ve, t,x,u’(f,x)] =V;

3) B[V° &, x,u] >0for any u,
then the funcuion u=w"° (£,x) solves the optimal y-stabilization problem, Here

o0
o

S' o (¢, x° [t],u’ [t]), d¢ = min j © ¢, x [£], ut]) di = V° (to, X [te]) (3.21)
t to
Proof, From (3.20) and condition 2) of the theorem it follows that V*' = W relative
to the system x” = X (2, %, W (¢, x)). Therefore, all the hypotheses of Theorem 16 are
fulfilled for k = m (respecuvely, for k = n). Let us prove relation (3, 21). By integrat-
ing the equality dV° (¢, x° [2])/ dt = — w (¢, x" [£},u° [¢]) and taking into account that
lim V° (¢, x° [t]) =0 as 1— oc,; we obtain

V2 (1, X% [to]) = | o (t,x° [t],w° [¢])dt (3.22)

g

0‘—":8

By virtue of condition 3) of the theorem the inequality dV° (¢, x* [1])/ dt << — @ (2, X
{2]) is valid for every function u = u* (¢, x) ensuring the asymptotic y-stability of the
motion x == U ; by infegrating this inequality and taking into account that lim ¥V (¢,
x* [1]) = 0 as ¢— oo we obtain ©
Ve (to, X* [to]) gj (¢, x* [1], u* [t])dt (3.23)
t

(x* [2] == x° |4,]). Then, (3,21) follows from (3, 22) and (3, 23), which is what we had
to prove,

This result generalizes a theorem appearing in [35], Supplement IV, One of the me-
thods for solving the optimal stabilization problem was proposed in [32],

11, Only the first steps have been taken in the Y -stability problem in the linear
approximation [11]. In this subsection we take V' (¢, x) = {D* V (v, x (v; & XD}
At first we consider the linear system

= A{)y+ Bz, z=C)y+ D)z (3.24)

in which 4, 2, ¢, D are matrix-valued functions of appropriate orders, continuous for
t> 0 , Itis known that any solution x = x (#; {, X} of system (3, 24) is defined for
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t & [0, oo).
Theorem 30 [11], The motion x = 0 of system (3, 24) is exponentially asympto~-
tically y -stable if and only if there exists a function ¥ (s, X) satisfying the conditions

Ivi<Vex)<M{yl+izl) (8.25)
[V, )=V Ex) [ <My—y|+lz—2z]) (3.26)
ViEn<—al (¢,%) (3.27)
Proof, 1)Sufficiency, Integrating(3,27) we obtain
V (£, X (t; to, Xo) << V (fo, Xo) exp [— & (£ — to}] (3.28)
By virtue of inequalities (3, 25),
1y (2 to, Xa) | S V (& X (& Lo, X)) (3.29)
V (to, Xo) M (lyoll +120 1) (3.30)

Then, (1.5) follows from (3,28) — (3, 30),
2) Necessity, Suppose that(1,5) holds, We set

Vi, x)=sup[|y ¢+ vty x){exp(ar): T 20] (3.31)
Obviously, ¥V (t,x) 2>} y | By virtue of (1, 5), from (3, 31) it follows that
Vi) SM([yl+izh
Since x (t; t,, Xo) depends linearly on xg,
YU4+TLX)—Y(E+ T X) =y + Tt X —X)
Consequently, ‘
V63—V (6 x) | SSUp LY+ Tt x —x) exp @O] S M (Y =¥ [+ ]z —2)
Further, we have
V4 h,x(t+ hit,x)= 3;g[“y(t+h 413t kR, x (4 Bty X)) [ exp (aT)] =
= sup [y¢+h+1t,x)]expr))= sup [y ¢+ 7t x)jexp (av) exp (—ah)] S
< sup [yt 4+ 7t x)| exp (av) exp (— xh)] = V (£, X) exp (— ah)

Consequently,
—,ﬁ—[va+h,x<z+h;t,x»—V(t.xng—i,;—{exp(—ah;—-uV(t,x> (3.32)

whence (3, 27) follows as & — - 0, Note that the function ¥V (¢, x)is continuous, Indeed,
VE+hx) =V ED IV E+hX)—VE+h x|+
VR =V E+hxE At ) |+ ]V E+RXE b4 x)—V (%)
The first two terms on the right-hand side tend to zero as & — 0, x — x"| — O since ¥V
satisfies a Lipschitz condition, the last term tends to zero by virtue ot (3, 32), The the~-

orem is proved.
We now consider the perturbed system

Y=A®y+BWz+i¢t 2, 2 =COy+D()z+g(ty,2) (3.33)

We assume that the functions f and g satisfy a Lipschitz condition in (y,2). 1£(¢, 0,0}l -+
+ g 0,0§=0 ang
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¢y, -+ gty alseoly]) (3.34)

moreover, the function @ (¢, u) is continuous for 12> 0, u 2> 0, locally satisfies a Lips -
chitz condition in u ,and does not decrease with respect to 4, @ (, 0)= 0. ¥,;, and V
be the derivatives of the function ¥ relative to systems (3, 24) and (3, 33),

Theorem 31 [11], Let the motion x = 0 of system (3, 24) be exponentially asym-
ptotically y-stable, If inequality (3, 34) is fulfilled, then the vy -stability of the motion
x = 0 of system (3, 33) is of the same nature as the stability of the solution u = 0 of
the comparison equation

W =—oau-t+Mao( w (3.35)

Proof, By Theorem 30 there exists a function V (¢, X) satisfying the conditions (3.25)
—(3.27). For this function

Vin X)) SV 0 + M UL+ 8D < — oV (5, %) 4 Mo ¢, y])

whence, making use of the inequality V2 || ¥, we obtain
Vy ) S — aV (& x)+ Mo ¢, V (¢, %)

Consequently, V (¢, X (¢} 15 Xo)) <X u (8 &, ug) follows from V (4, Xp) S Up whence
1Y (& 1, Xo) I S u (% %, up), which proves the theorem,

For example, if the solution u =0 of Eq, (3.35) is exponentially asymptotically sta-
ble, then the motion x == @ of system (3, 33) is exponentially asymptotically y-stable,
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