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Liapunov (Cl], p. 370) posed the problem of the stabiliv of motion with respect 
to a part of the variables. Malkin cd] in his remarks on Liapunov’s theorems sta- 
ted (without proof) certain conditions for carrying Liapunov’s theorems over to 

this problem. The concept of a function V (2, x1, . . . . z,) which is sign-definite 
relative to zl, . . . . zm (m < R) was introduced in [3] and related theorems were 

proved generalizing Liapunov’s theorems Cl]. Subsequently there appeared a 

number of papers [4 - 151 which validated the possibility of applying the theorems 
of Liapunov’s second method (and their modifications and generalizations) for 

this specific problem. A number of surveys [ 16 - 191 exist in the literature on 

the stability theory of motion, however, there is a lack of surveys on stability 
investigations with respect to a part of the variables. The present paper is an 
attempt at filling this gap and gives a survey of the results in this area obtained 

to date. In the paper we have introduced a unified notation and uniform formu- 
lations which do not always coincide in form with those of the original authors 
but which do completely reflect their sense. 

1. Baric definltiom, We consider a system of differential equations of pertur- 
bed motion 

Xi’ = Xi@, X1, . . ., rn) (i = 1, . . *, n) 

or, in vector form, 

x’ = x (t, x), x (t, 0) zz 0 (1.1) 

We concern ourselves with the question of the stability of the unperturbed motion x = 0 
with respect to a part of the variables, to be specific, with respect to xl,. , xm (m > 0, 

n = m + p, p >, 0). For brevity we denote these variables by Y = xi (i = i, . . . . m) and 
the rest by zj = zm+j (f = 1, . . . . n - m = p), ,i. e., x = (yl, . .., ym, zl, . . . . zP). We 
introduce the notation 

We assume that: 

(a) in the region 

t >o, Ilrlldw>o~ o~Ilzll<+~ (1.21 

the right-hand sides of system (1.1) are continuous and satisfy the conditions for unique- 
ness of the solution; 

(b) the solutions of system (1.1) are z -extendable; this means [6] that any solution 
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x (1) is defined for all t > 0 for which I/ y ( 1) jl .< H. 

By x = x (t; to, x0) we denote the solution of system (1.1) determined by the initial 
conditions x (t,; t,,, x0) = x0. 

Definition 1. The motion x = 0 is said to be: 

(a) stable relative to q, . . . . X~ [l], or y -stable,if for any e > 0, t, > 0, no matter 

how small a is, we can find 6 (E, lo) >U such that for every t >, t , 11 :i(t; to, x0) I/ < E 
follows from Ij x0 11 < 6 ; 

(b) y-stable uniformly in t, [5, 6, 91 it in Definition la we can choose ?I (E) inde- 

pendently of 1, for each E > 0 ; 
(c) asymptotically y -stable [3, 5, 6, 91 if it is y-stable and for every t, >, 0 there 

exists A (to) > 0 such that the solution x (t; t ,,, x,,) with /J x0 ]j < A satisfies the condition 

linl ij .; (t; hi, X0) Ij = 0 (1.3) 

t-+m 

(here we say that the region 11 x /J < A lies in the region of y -attraction of the point 

x = 0 for the initial instant i,,); 

(d) asymptotically y -stable uniformly in {to, x0} [S. 6, 91 if it is y-stable uniformly 

in to and there exists a number A0 > 0 independent of to such that condition (1.3) is 

fulfilled uniformly with respect to (to, x0) from the region 

t1,,30, jl XI) 11 < Au 

i.e. for any a > 0 we can find T (E) > 0 such that for all t & to + T, 11 Y (t; to, ~0) j/ < 
< e follows from to > O,% (1 x0 jj < A0 . 

(e) asymptotically y-stable in-the-large [9] if it is y-stable and condition (1.3) is 

fulfilled for any t, 2 0 and x,,, i. e. , if the region of y-attraction of the point x = 0 

is the whole space; here it is assumed that the right-hand sides of system (1.1) satisfy 
the Conditions (a) and (b) indicated for them, in the region 

t > 0, 0 < II x II < + La2 (1.4) 

(f) exponentially-asymptotically y-stable [ll] if there exists constants M > 0 and 
a > 0 such that 

II y (C to, xn) 11 s .I[ (11 yo /I + // zo 11) esp [- Q (t - h) 1, t > h > 0 (1.5) 

We shall be considering certain real single-valued functions V (t, x),continuous and 

possessing continuous partial derivatives 9V / 8, 8V / axi (i = 1, . . , n)in region (1.2), 
satisfying the condition V (t, 0) ~0, as well as their total time derivative V’ (t, x) taken 

by virtue of system (1.1) 

Definition 2. A function W (~1, . . . . y,) E W (s), not depending explicitly on time, 
is said to be positive-definite [l] if it is nonnegative in the region ~lyll<<H and vanishes 
if and only if y = 0. A function V (t, x) is said to be 1 -positive-definite [3] if there 
exists a positive-definite function W (y), not depending explicitly on t, such that in region 

v (t, xl > w (Y) 

Lemma 1. A function V (t, x) is y-positive-definite if and only if there exists a 
continuous function a (r), monotonically increasing for r E lo. Hl a (0) = 0 such that 
in region (1.2) [5. 6, 91 
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v (k xl > @ (II Y ID 0.7) 
Proof. The sufficiency of inequality (1.7) is obvious. We prove the necessity. We 

set b (r) = min [IV (y): I/y /I = r.]. Then V (t, x) > b (11 y 11) and, moreover, b (r) is con- 

tinuous by virtue of the continuity of IV. If b (r) increases monotonically on [0, H], then 

we take a (r) = b (r), otherwise, we can take a (r) = a~ (r)min lb (s): r < s \< H], 

where cp (r) is a function increasing monotonically on [O, HI and, moreover, U 6 9 < 

< f-From Lemma 1 it follows that inequalities (1.6) and (1.7) are equivalent. 

Definition 3. The function V (t, x) is called y-positive definite in the region 
(1.4) if (1.6) is fulfilled in the whole of this region and for any e > 0 

infiW(r):E~l//j’j/<~l>O 
This definition is equivalent to (1.7) with monotonically increasing function a (r) for 

r E LO, =Q) ; the proof is analogous to that of Lemma 1. 

Definition 4. A function Y (t, x) is said to be positive-definite in zlr . . . , zk, m < 

< k < n, (for the Y -stability problem) if Y (t, x) > W (zr ,... , zk) in region (1.2). where 

IV (0, . . . . 0) = 0 and for any E > 0 

inf 
i 

W (zl, . ., “r): ixi)>P?, ] ilYII\<H >O 
i=l 

It is not difficult to prove the validity of 

Lemma 2. Definition 4 is equivalent to the fulfillment in region (1.2) of the in- 

equality 
v (t, 

with a continuous function a (r), monotonically increasing for r E [O, 00) t Q (0) = 0. 
Definition 5. A function V ft, xf admits of an infinitesimal upper bound in sic,, .+.I 

,..E:;, m < k Q n,if for any E> 0 we can find 6 (a) > 0 such that I f’ ft, x) I< E follows 

from 
t>0, Xi” < 82, --<x”Ir+it..~rxn<-+W 

This signifies that i=l 
k 

v (t, x) - 0 as 2 xi2 - 0 
i=l 

uniformly in t> 0 and - X, < ~+i, . . . . zn < + M. 
Lemma 3, A function V (t, x) admits of an infinitesimal upper bound in y (in zl, 

. ..) Sk, m % k < n) if and Only if there exists a function b (r) of the same type as a (r) 
in Lemma 1, for which in region (1.2) PO] 

1 v (4 x) I G iJ (II 3 II) (2 3) 

respectively, 

,v(t,x),.b((~xi2)1;) 
i=1 

WJ) 

In particular, 1- (t , x) admits of an infinitesimal upper bound in. x if and only if 

IV(~,x)ld~(lIXl/) (1.10) 

2. Stability rnd inatrbillty, 1. Theorem 1. (l)Ifsystem(l.l)issuch 
that a function V (r, X) satisfying inequality (1.7) exists, while P < 0, then the motion 

x = 0 is y-stable @J. 
(2) If, furthermore, V satisfies inequality (1.10). then the Y -stabiliry is uniform in 
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t, r5l. 
(3) If the conditions in Sect. 1 are fulfilled and V satisfies inequality (1.8). then for 

any e > 0 we can find g (E) > 0 such that from t, >, 0, 11 y. /I<3 (0 < i ze /I< .A) follows 
! 3’ (t; to, Xo)il< e- for all t > to [S]; here it is necessary to fulfill the identities [12] 

Xi (t, 0, z) G 0 (i = 1, . ., m) (2.1) 

Proof. (1) For every e > 0 (e < g), t, > 0 we can find 6 (e, to) > 0 such that F (to, 
x0) < a (@follows from 11 xoji < 6. For the solution x = x (t; to, xa) with 11 x0 // <d by virtue 
of P ,< 0 from the relation 

V (t, x (t; to, x0)) = V ($0, x0) + j V‘ 6, x (r; to, x0)) dr (2.2) 
fc. 

we obtain v (t, x (t; to, XO)) < V (to, xo) for t > to. Thus 

a (11 y (t; to, x0) II) < v (t, x (G to, x0)) < v Go, x0) < @ (E) 
whence I( y (t; to, xnf I\ < E for all t 2 to. 

(2.3) 

(2) When inequality (1.10) is fulfilled we can choose 6 (e) = 6-l (a (e)) independent 
of t, (b-l is the inverse of function 6). If 11 x0 II < 6, then 

v (to, x0)< b (11 x0/1)< b F1(a W) = a (e.1 

(3) For each 8 > 0 we set B (E) = b-l (a (e)). If to > 0, j/ yci\] < q, then V (h,, W < 

< a (e) and (2.3) holds, whence 1) y (t; to, x0) II < 8 for t >, lo. 
Let us prove the indentities (2.1). We consider the solution x = x (t; to, 0, zo) for arbi- 

trary to >, 0 and zo. By virtue of (1.8), V (to, 0, zo) = 0. Since V > 0, while V < 0, 

from (2.2) follows V tt, x (t; to, 0, zo)) _I 0, whence 

11 y (t; to, 0, zo) /I G 0 (2.4) 

Equality (2.4) is equivalent to identities (2.1) (*). The theorem is proved. 

Note. The requirement of an infinitesimal upper bound for the function V implies, 

as also in the classical case BO]. the uniformity of the y -stability. An analogous con- 
clusion obtains also in the case of asymptotic y -stability. 

In [3] it was shown that it is possible to apply to the y-stability problem Chetaev’s 

method f213 for constructing the function V in the form of a bundle of integrals of system 

(1.1). 
Theorem 2. [9j. If a function v (t, x) satisfying inequality (1.7) exists and its 

derivative V’ (t, x) G - f ii1 Y II) (2.5) 
c (r) is a function of the type of u (r), then for any E E (0, X), to > 0 we can find 6 (to)> 
> 0 and T (to, E) > Osuch that for every x0 with II x0 II < 6 there exists an instant t, E 

(to, t, -+ T) for which jj y (t,; ‘to, no) /I < E. 
Proof. According to Theorem 1, (1) for each to> 0 there exists 6 (to) > 0 such 

that from II x0 II < 6 followsliy (t; to, x0) II < H for all t > to Let h (to)= SUP [VPO, x): 

IIx(I < 61. We set T (to, E) = h (to)/ c (e). If E -< 11 y (t; to, x0)/< H for t 6% (to, to -k T), 
then from (2.2) follows 

0 < (1 (E) < t; (to + T, x (to + 27 to, xr)) < v (to, x0) - c (8) T < 0 

l ) We obtain (2.1) by substituting the solution x = x (t; to, 0, zo) into system (1.1) and 
by taking (2.4) and the arbitrariness of t, > 0 and of & into account. The converse 
follows from the uniqueness of the solution. 
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which is impossible. The theorem is proved. 
Let us consider certain generalizations of the results presented. 
2. Theorem 3. [S]. (1) If there exists a function V (t, x) possessing the prop- 

erties: 

(a) V (t (0) E 0, V (t, x) is continuous at the point x = 0; 

(b) V satisfies inequality (1.7); 

(c) V (t, x (t; to x0)) does not increase on any solution x (t; to, x0) as long am IIY (t; to, 

xdii < H, 

then the motion x = 0 is y-stable. 

(2) If, furthermore, V satisfies inequality (l.lO), then the y-stability is uniform in 

10. 
To prove this we note that V (t, x (t; to, x0)) < V (t,,, xa) follows from condition (c). 

The rest of the proof coincides with the proofs (1) and (2) of Theorem 1. The converse 
assertion is valid for the second part of the theorem: 

Theorem 4 [53. If the motion x = 0 is y-stable uniformly in to, then there 

exists a function V (t, x) satisfying the conditions in part (2) of Theorem 3. 
Proof. We set V (t, x) = sup III y (r -i- a; t, z) II: 3 > 01. Obviously. V (t, x) >, 11~11 

and V (t, x) < e (Ilxlj) (E is taken from the definition of uniform y -stability). Further, 

we have 
I. (G x (C to, x0)) = au; II y (t + G t, x (C to, x0)) /I = o”YT II y (t + 0; to, xq) II 

Here we have made use of the uniqueness of the solution 

x (t; z, x (z; to, x0)) = x (t; to, x0) 

Let tl > tz > to, then 

(2.6) 

V (tl, x @1; to, x0)) = sup [I] y (tl + a; to, x0) II : 0 > 01 < 

< sup [II y (t2 + c tc, x0) II : 0 > 01 = v @2, x (t2; to, x0)) 

Thus V (t, x (t; to, x,)) does not increase. The theorem is proved. 
3. A somewhat different approach to the study of &y -stability was proposed in [4]. 

Suppose that we know beforehand the (arbitrarily crude) estimates 

I Z,i (‘i ‘07 X0) I < Ilj (t; ‘09 XJ Aj (t) (i=i,..*sp) (2.7) 

where rlj - 0 as 11 x0 11 .+ 0 uniformly in t E [to, W) and the Aj (t) are positive functions 

continuously differentiable for t > 0 . In system (1.1) we make zhe change of variabies 

4( = ‘i’ EjAj=xj (i=i,..., m;i=m+l,..., n) (2.8) 

here the Q satisfy the system of equations 

Ei’ = X, (tt El, . . .t 4,,,t F,+lA,+l, . . .> S&J (i=i,..*,m) (2.91 

4j’ = I- Aj’Ej + Xj fit* 411. . .y 4,. Em+lAm+l* . . .y &‘,)I I Aj 0’ = m + 1, . . ., n) 

The following is obvious. 
Lemma 4. The y-stability of the motion x = u of system (1.1) is equivalent to 

the Liapunovktabillty of the motion 5 = 0 ot system (2.9). 
Theorem’5 [4]. For the uniform in to y-stability of the motion I = 0 of system 

(1.1) it is necessary and sufficient that there exist a fumtion V (t, x) satisfying the con- 
ditions: 
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(a) V (t, x) is defined in the region 
111 

&q- 2 (xjl.~j)~~r)-2>o, t>O 
i=l r=m+1 

(b) for any C, > 0 we can find C, > 0 such that from 

(Xi / Aj)” > Cl” 

i-z1 j=m+1 

follows v (t, x) > c, (CC < 3 / 2); 

(C) for any y1 > 0 we can find ?a > 0 such that V (t, x) < yl if only 

i=l j=,+1 

(d) the function V does not increase along the solutions of system (l.l), on which it 
is still defined. 

Proof. Sufficiency. Under the change of arguments of the function V (t, x) by 
formulas (2.8) we obtain the function V (t, g) satisfying the conditions of the theorem 

given in [4] (p. 29), therefore the motion g = 0 of system (2.9) is stable uniformly in 

to. By virtue of Lemma 4 the motion x = 0 of system (1.1) is y-stable uniformly 

in t,. 

Necessity. From the uniform in to y-stability of the motion x = 0 of system (1.1 
it follows, according to Lemma 4, that the motion 6 = 0 of system (2.9) is stable uni- 

formly in to. Having taken for system (2.9) a function V (t, g) in accordance with the 

theorem in [4] (p. 29) and having replaced its arguments by formulas (2.8), we obtain the 

required function V (t, x). The theorem is proved. 

C or o 11 a r y [4]. If the estimates (2. 7) are not known beforehand, but there exists a 

function V satisfying the hypotheses of Theorem 5 (in which now the At (t) are some 

1 

functions continuously differentiable and positive for t > 0 )then the motionx = 0 of sys- 

tem (1.1) is y-stable uniformly in to and the estimates (2.7) hold. 

4. Let V (1, x) satisfy the differential inequality [6, 221 

L-’ (t, x) < 0 (2. r (t, x)) (2.10) 

in which o (r, V) is a function continuous for t > 0, v >, 0 and the congruence equation 

u’= o(t, v) (o(t,O)zO) (2.11) 

has the unique solution v = v (t; to, I+,) satisfying the initial condition v (to; to, vo) = v, 
for each point (to, vo) of the domain. 

Theorem 6, [6]. If a function V (1, x) exists satisfying inequalities (1.7) and (2.10) 
and, furthermore, 

(1) the solution v = 0 of Eq. (2.11) is stable, then the motion x = 0 of system (1.1) 
is y-stable; 

(2) V satisfies inequality (1.10) and solution v = 0 of Eq. (2.11) is stable uniformly 
in to, then the motion x I- 0 is y-stable uniformly in to, 

Proof. From (2.10) it follows 1233 that when V (to, x0) < v,, , 

V (t, x (t; to, x0)) < I (t; to, vo), t >, to (2.12) 

(1) For any e > 0, to > 0 there exists, by virtue of the stability of the solution v = 0, 
s-t (e, to)> 0 such that from v, < r~ follows v (t; to, vo) < a (e) for all 1 > to. Let 
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6 (VP to) = 6 (e, to) > 0 be such that Y (ts, x0) < q if I] x,, ]I < 6. Then from (2.12) and 
(1.7) follows, for t & to, 11 x0 )I < 6 

a (II Y (C to, x0) IU < v v, x @; to, x0)) < v (t; to, t)o) < 4 (e) 

whence II y (t; to, xo) II< e. 
(2) In this case q (e) > 0 does not depend on to; but then also 6 (e) = t-1 (q (e)) does 

not depend on to. The theorem is proved. 

The converse assertion is valid for the first part of Theorem 6. Together with system 
(1.1) we consider the system [12] 

x*: = x (t , x*) ‘p (y’) f x* (t, x’) (2.13) 

in which cp is a scalar continuously-differentiable function, 0 < cp < 1 and 

cp (y*) = 1 i for llY* II d h 
0 for h<H16jy*IjdH 

Let x+ = x* (t; to, x0*) be the solution of system (2.13) with the initial conditions x* 

(to; to, x0*1 = x0** We assume that solution of system (2,13) is Z* -extendible. 

By v;r, and V,,, we denote the derivatives of function V by virtue of systems (1.1) 

and (2.13) respectively. These systems coincide in the region 

t>,0. IlYllbh, Odll~ll<~ (2.14) 

In the region (2.14) we seek the function V (t, x) among the solutions of the functional 
equation [S] I$,)’ (C x) = V(,)’ (l, x) = 0 (t, vp, x)) (2.15) 

We assume that the continuous derivatives ao / au, axi / a~, (f, f = 1, .., n) exist. The sol- 
ution of Eq. (2.15). satisfying the condition V (0, x) = p (x) (p is a differentiable fun- 

ction), is given by the formula [S] 

v (t, x) = v (C 0, p (x* (0; t, x))) (2.16) 

By virtue of the differentiability of the solutions of system (2.13) and of Eq. (2.11) with 
respect to the initial conditions, V has the continuous derivatives S’ / at, L~V / &vi (f = 
=I, . . . . n) (*). Let the function o satisfy the condition - 

A) all solutions of Eq. (2.11) are defined for t E [0, M) and the function v (f; 0, ug) 
is positive-definite, 

v 0; 0, VII) > A (uo) (2.17) 

The ore m 7 [6]. If the motion x = 0 of system (1.1) is y-stable. then for any 
function o satisfying condition (A) there exists a function V (t, x) satisfying inequality 

(1.7) and Eq. (2.15). 
P r oo f. It is sufficient to prove that under a suitable choice of the function p (x) the 

function V defined by formula (2.16) will satisfy inequality (1.7). Let p (x) be such that 

P (x) > p* (il x Ill (2.18) 

Using method given in [‘24, 251 we can show [12] that 

x* (6; t, x) II 2 y (II Y II) (9 (2.19) 

*) If we waive the smoothness of the functions mentioned, then V proves to be not diff- 
erentiable, but the derivative dV (t, x (t; to, ~0)) / dt will exist 161. 
“) h (r), r(* (r) and Y (r) are functions of the type of a (r). 
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follows from the condition that the motion x = 0 is Y -stable. From (2.17) - (2.19) 
ensues (1.7) with a (r) = h (p* (v (r)). The theorem is proved. 

5. Let us consider the application of a vector-valued function V. The results obtained 

in BS] for m = n were carried over (without proof) to the case m < n in [9]. Let o, 3, 
f be vectors in the k -dimensional space R/i. Wewrite o<$ ifUi<*i(i=i,..., 

. . . . k). By definition the function f, (t, o) does not decrease with respect to al, . . . . @s_lp 
0 s+l ,... wk if f8 (t, O*) -< f, (t, a*+) for @g* = WY, O,* Q O:* (i = 1, . . . . 8 - 1, 

s + 1, . . . . k). 
We introduce the following conditions: 

I. There exists a vector-valued function V = (I’,, .,., vk) such that 

1) V and V’ are continuous, v (t, 0) s v’ (t, 0) E 0; 
2) V, >, 0, . . . . VI > 0 for certain’ I, 1 Q 1 < k, while 

v, (t, x) + ... + I’, (L x) > a (II Y II) (2.20) 

3) the derivative V’ satisfies the inequality 

V’ (C, x) Q f (r, V (t, x)) 

II. 1) The vector-valued function f (t, V) is defined 

t >,o, II V ~I< R 

whereR=mor R>sup(I/V(t,x)II: t>O,l/yII<HI; 

and is continuous in the region 

2) Each of the functions fs (S = 1, . . ., k) does not decrease with respect to VI, . . . . 

v S-l' vS+,, ****, vk; 
3) f (t, 0) SO. 
III. Let a = (or, ..*, WI). Consider the congruence system 

o.=f(t, 0) (2.21) 

Under the conditions wrO > 0, . . . , 0~0 > 0 the solution o = U of system (2.21) is: 

1) a -stable; 
2) a -stable uniformly in to; 
3) asymptotically a-stable; 
4) asymptotically a -stable uniformly in {to, %). 

IV. V (L x) -+ 0 uniformly in t > 0 as x -) 0. 

T heore m 8 [9]. (1) If conditions I, II and III-1 are fulfilled, then the motion 
x = 0 is Y-stable. 

(2) If conditions I, II, III-2 and IV are fulfilled, then the motion x = 0 is Y-stable 
uniformly in to. 

Pro o f GSJ. (1) For any 8 > 0, to 2 0 we can find A (e, t,) > 0 such that from 

(for olo > 0, . . . . alo > 0) follows: 

‘) 0 = 0 (1; to, oo) is the solution of system (2. al), satisfying the initial conditions 

0 (to; to, wol = @o* 
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for all t > t,. By virtue of II-2 the theorem of @3] is applicable, according to which 

there exists the upper solution ro+ (t; to, eo) with the same initial conditions, satisfying 
for t > to the inequality . 

$ I q+ k $7 @()‘o) 1 <a 63 
6=1 

With respect to L and ts we can select 6 (h, ta) = 6 (e, to) > 0 such that from 11 XO \I< 

< 6 follows: 
i: I vj @,* “(#I I< h 
j=l 

Let us show that I[ y (t; to, x0) 11 < e for t > to, if II x0 11 < 8. We assume that there exist 

t, > t,and x* with \I x* II < 6 for which 11 y (t; to, XJ 11 < e for t E [to, t*), but 

II Y (% to* x*) II = a (2.22) 

We set o* = V (to, x,) (here WI* > 0, . . . . wr*& 0). By the choice of 6 

5 I aa* I< h 
s-1 

consequently, for t E [to, t*I c [to, CO) 

The functions V, (t,. x (t; to, x+)} are continuousIy differentiable in t on [to, $, + At) 
(At > 0 is sufficiently small). By virtue of I-3, 

vt (t, x (1; to, x*)) < f (t, v (4 x 0; tot x+)1) 

then, according to the theorem of [ZS], 

V6 (k x (G ts* “J) Q 0,” 0: t,, +) 

Hence 

a @Y (t; tOr x*)ID < i v6 (t. x(t; to, x*))< f: %+ (6 to, me)< a(E) (2.23) 
8-1 6=l 

Consequently, 11 y (t; lot x0) B < e for all 2E Ita, t,] which contradicts equality (2.22) 

when 1= t,, 
(2) In this case h and 6 may be chosen independent of b,. The theorem is proved. 

6. In the problem of the preservation of stability relative to a part of the variables 

[SJ. together with system (1.1) we can consider the system 

x = X (t, x) f R (t, x) &t, O}zO) (2.24) 

satisfying the same conditions as does system (1.1). I.& Vcu and Vtz, be the derivatives 
of function. V by virtue of (1.1) and (2.24). 

Theo r e m 9 [6]. If a function V (t, x) satisfies inequality (1.7) and the Lipschitz 

condition 1 v (t, x1)- v(t, x2) I d Lll x1 - =I (2.25) 

while I’(,, < 0, then we can find a function d (r) (of the typeof a (r)) such that from 
the inequaiities jl R ft, x) II Q go (0 d (II Y II) (2.26) 

OD 

r ‘P (t) dt < + 00 (2.27) 

follows the uniform in lo y-stab%; of the motion x = 0 of system (2.24). 
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Proof. By virtue of (2) of Theorem 1 the motion x = 0 of system (1.1) is y -stable 
uniformly in to and we can talk about the preservation of stability. From (2.25) and 
(2.26) follows: I,, 

(s)- (t? x) Q P<‘trj’ ( I, x) i_ Lrp (t) d (iJ y I/) <(Lq (0 d (!i y II) (2.28) 

whence, by virtue of (1.7). V(,, (t, X) q L 'p (1) d (a-l (V (t, x))). If the function d (a-i 
(r)) = p (r) is such that 

c 
dr 

-=+w 
t P (4 
0 . 

then the solution u = 0 of the equation u’ = L ‘p (1) p (u) is stable uniformly in 1,. Hence 
follows the required result if we set, for example, a (r) = a (r). 

7. ln order to detect the y-instability of the motion x = 0 of system (1.1) it is su- 
fficient to observe only one trajectory emerging onto the surface Ii Y II = K for arbitra- 

rily small II x0 II nl]. The set of points (t, x) of region (1.2) for which V (I, x) > 0 is 
called the region V > 0 pl]. 

De f i n i t i on 6 @?ll. A function U (t, x) is said to be positive-definite in the reg, 

ion V > 0 if for arbitrarily small E > 0, there exists 6 (E) > 0 such that, for 
every point (t, x) of region (1.2). satisfying the condition V (1, x) ),E, the inequality 
U (t, x) >, 6 is fulfilXed. 

As was noted in [3, 141. Chetaev’s theorem fzl] on instability can be successfully 
applied to the y -instability problem: 

T h e or e m 10 @l]. If a function V (1, x) is bounded in the region V > 0, existing 
for any f), 0 and for arbitrarily small jj x 11, and if V’ is a positive-definite function 
in the region V > 0, then the motion x = G is y-unstable. 

Tbe statement and the proof of this theorem coincide with those of Chetaev’s theorem 

pl] with the sole difference that the region considered in !$l] was t > 0, [/ x 11 < H> 

> 0, while in Theorem 10 (and in Definition 6) we consider the region (1.2). The con- 
ditions of Theorem 10 ensure chat the corresponding solutions will leave region (1.2) in 

a time not exceeding (L - vO) / I’ @l J, starting from the instant lo. Since this time is 

finite, the solutions go onto the surface II Y 11 = H (see condition b of Sect, 1). 
Note, Theorem 10 remains valid 1143 if the function satisfying the hypotheses of 

Theorem 10 is V = V (t, 3). 

The ore m 11 [13]. If: (1) system (1.1) is autonomous and all its solutions starting 
in some neighborhood of the point x = 6 are z -bounded; 

(2) the function V (x) is such that: Y (0) = 0 and in any neighborh~ of the origin 
there exists a point x for which V (x) < 0; 

(3) v’ (x) = 0 for x E M, V’ (x) <0 for Y s M (2.29) 

where N is the set not containing entire trajectories besides x = 0, then the motion 
x = 0 is y-unstable. 

Proof. Assume the contrary: let the motion x = 0 be y-stable. Having chosen 
x0 from the conditions V (x0) < 0, I\ y (1; 0, x0) /I < H for t 2 0, we obtain, by virtue 

of (1) and (2), 
I] x (t; 0, x0) II >, 11> 07 t>0 (2.30) 

The set I?+ of the @ilimit points of the solution x (2; 0, x0) is nonempty and invariant 
D7]. moreover, I’+ c M @S, 29). By virtue of (2.30). I’+ does not contain the point 
x = O,Consequently, the set Mcontains a trajectory other than x = 0, which is imposs- 
ible. The theorem is proved. 
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This result generalizes a theorem of Krasovskii BOl. 
Theorem 12 [133. If conditions 1 and 2 of Theorem 11, (2.29) and 
4) Y (0, z) > 0 for any z; 
5) the set (x: y = 0) is invariant; 
6) the set M\{x: y = O} does not contain entire trajectories, then the motion x = 0 

is y -unstable. 
Proof. We assume the contrary and we choose x,, as in the proof of Theorem 11. 

The set I’+ is not empty. Let 

lim x (t,; 0, X0) = x* E P+. 
T%-rx, 

If 

lim IIY (t; 0, m)II =O 
t-cm 

then y* = 0 and, by passing to the limit in the inequalities 

lim V (x (t; 0, x0)) d V (x0) < 0 
i-bw 

we obtain 0 < V (0, z,) a V (so) < 0, which is impossible. Consequently, II Y (4,; 0, xd 

I( > q > 0 for some sequence tn - od and we can take y. # 0. According to 5, ]I y it; 

0, x.) II # 0 for all i > 0, whence, by virtue of the invariance of r l and of the prop- 
erty I’+ C M follows x (t; 0, x,) E M \ {x: y = O} for any t > 0, which is impossible. 
The theorem is proved. 

a, Aaymptotie ,trbillty. 1. Theorem 13 [lo. 143. If a function V(C, x) 
satisfying inequality (1.7) exists and if for any 1, >/ 0 we can find A (to) > 0 such that 

from II xo II < A follows V (1, x (1; k,, x&JO(*) as 1 + 00, then the motion x = 0 is asym- 

ptotically y-stable. 

This assertion follows from the y -stability, the inequality (1.7) and the conditionVi0. 

Theorem 14 [lo. 14% Ifafunction V(r, x)issuchthat 

for a function 9 (1) monotonically increasing to infinity, 6 (0) = 1, while v’ d-0, then 
the motion x I= 0 is asymptotically y-stable. 

This result generalizes a theorem of Chetaev @ll. For each pair of numbers 1, & U, 

6’ > 0 we consider the set [9] 

E (to, 6’) = {(t, x) : t > to, x = x (C to, Xo)r ii X0 iI < 6’) 

The ore m 15 193. If a function P (i, X) satisfying the hypotheses of Theorem 2 
exists and if for any &, > 0 we can find ii (r,) > 0 and M(fo) > 0 such that 

II Y It, 9 II B M for (t, x) E E (to, 6’) (3.1) 

then the motion x = 0 is asymptotically y -stable. 
Proof. By virtue of Theorem 1 (1). for every a> 0, is > 0 we can find 8 (e,‘to.l, o< 

< 6 < 6’, such that from 11 x0 II < 8 follows 11 y (1; t,,, x0) 11 < 8 for i > 6. Let us show 
that hm 11 Y (t;t,,, x,)(1 = u as z + 00 if I( x0 (1 < 6. Assume the connary: ret there exist 

a point x* with IIx,(( < b, a number I > 0 and a sequence fk - co, rk - tk-l> a > 0, 
L = 1, & %., such that II Y (tk;to, x,) 11 > 1. By virtue of (3.1) we can choose 

l ) The notation ” V 1 0” means that ” v tends to zero, decreasing monotonically (in 
the wide sense)“. 
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p, u < p < a / 2, for which l/ 2 d II Y (1; to, x,) II < e for 1~ [tk - p, tk + p], k = 

- 1, 2, 3,... . Here, on the basis of (2.5). from (2.2) follows 

k tiffi 

o < v @k i-h x @k +& t0, X*)) < v (to, x*) + 2 s r(Z, X(Z;tO, X&C&< 

i=1tg!3 

< v(to, XJ - 2lEpc(I / 2) 

which is impossible for k sufficiently large. The theorem is proved. 
Theorem 15 generalizes a theorem given in [30]. By an example it is shown in [12] 

that when m < n Theorem 15 is not invertible even in the case of asymptotic y -stab- 

ility uniform in {to, x0}. It can be shown [31] that theorem given in [30] (i.e., Theorem 
15with m= n) is also not invertible in the general case. 

2. The ore m 16 [32]. If a function V (t, X) satisfies inequalities (1.7) and (1.9), 

I.e., 

a(lI~Il)<vYh x’6~((~xi’)“i , m<k<n 

and its derivative 

(3.2) 

(3.3) 

then the motion x = 0 is asymptotically y -stable. 
Proof. For every a > 0, t, > 0 we select 6 (e, to) > 0 in accordance with Theorem 

1 (1). We show that from 11 x0 II < 6 follows lim V (t, x (t; to, x0)) = 0 as t -+ 00. If we 
assume the contrary, then by virtue of v’ a 0 we have Y (t, x (1; to, x0)) > V, > 0. 
On the basis of this, from (3.2) and (3.3) we conclude that 

k 

qv; t,, 
> 

',i 
x0) >b-'(V*), VP, x (C to, x0)) Q - c (V(V,)) (3.4) 

Using (3.4) and (2.2) we obtain 

u < 1’ @, x (t; lo, x0)) < V@o, x0) - c (b-1 (V,)) (f - &)) 

which is impossible for t sufficiently large. Thus, llm V (!, x (t;&, x,,)) = 0 as z --t 00. 
The result required follows from Theorem 13. 

De fini t ion 7 (cf. [12‘J). The solutions of system (1.1) possess pTOPeFtY (R) if for 

some 6 > 0 and for any a > u we can find T (E) > 0 such that from 

k 

t0),0, ~Xio2<62 (--<Xjo<foc, i=k+l,...,n) 

i=l 

follows 1) y (C to, x0) II < 6 for all t > to + I’. 
Analogous to Cl23 we can prove 
Theorem 17. For the existence of a function V satisfying the hypotheses of Theo- 

rem 16 it is necessary that the solutions of system (1.1) possess property (R) and that the 
identities 

X,@, 0,. . .I 0, 5k+1’. ., x,)=0 (i=I,..., k) 

be fulfilled. 
If k = m, while Xi and aXi / axi (i, j = I,..., n) are continuous and bounded in region 

(1.2). then these conditions are sufficient [12] for the existence of a functior V satisfy- 
ing the hypotheses of Theorem 16. Theorem 16 is noninvertible when k > m which 
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follows from the example in [12j. 

3. The ore m 18 [9]. If a function V (t, x) satisfying inequalities (1.7) and (1.10) 
. . 

exists. 1. e., 
a (II Y ID d V (4 x) G b (II x ID (3.5) 

the derivative v’ < 0 and V (1, x) -t 0 uniformly as V (t, x) + 0 (*). then the motion 
x = O’is asymptotically y-stable uniformly in {to, x0}. 

Proof. If to),& [x,II<As= b-l (a (El)), then the inequality II y (1; t,,, x0) [ < IfI 
is valid for any t >, t,,. . For every e, 0 < a < E we can find 6’ (e) > 0 such that 

V (1, x) < a (8) follows from 1 V’ (t, x) ( < 6’. We set 2’ (e) = 2a O/6’ (e). If we admit 

that I ‘v’ (z, x (I-; to, x0)) I > 6’ (8) for z E (1,, t, + 2’) and [ x0 I< A,,, then from (2.2) we 
obtain 

0 < V (tu + T, x (to + T; to. xi)) < V(to, XO) - 2a (8) < a (e) - 2a (e) < 0 

which is impossible. Thus, for some I, E (t,,, i,, + 2’) we have I V (t,, x (t,; t,, x,,)) I.< 

< 6’ and, consequently, V (t,, x (t,; t,,, xg)) < a (e). But then for 12 2. 

a (II Y (C to, x0) II) d V (6 x (C to, x0)) d V (b,, x u*; to* x0)) < a (8) 

whence 11 y (t; t,,, x0) I< E for all 1> t, + T > t,. The theorem is proved. 

4. We consider some generalizations (see Sect. 2. subsection 2). 

The ore m 19 [53. If there exists a function V (1, x) possessing the properties: 
a) 17 (f, 0) f 0, V (t, x) is continuous at the point x = 0; 
b) Y satisfies inequality (1.7); 

c) D+V (t, x (C to, x0)) < -c (V (t, x (t; to xn))) (“) (3.6) 

then the motion x = 0 is asymptotically y-stable. 

Proof. Having chosen i3 (e, to) > 0, in accordance with Theorem 1 (1) we get that 
the limit lim V (t, x (1; t,,, x,)) = V,>O as t-+wexistsfor~x,1<6. Ifweassume 
that V, > 0, then 

D+v (k x (t; to, x0)) ( - c (V,) 

follows from (3.6). Integrating this relation we find 

0 g v (t, x (t; to, x0)) < v (to, x0) - c (V,) (r - to) 

which is impossible for t sufficiently large. Thus, V, = 0, which is what we had to 

prove. 
Theo r e m 2 0 [Sj, If a function V (f, x) satisfying conditions a), b) of Theorem 

19 and inequality (1.10) exists and, moreover, 

D+v (t, x (t; zo, xoj, 6 - c (II x (C to, xfl) II 1 (3.7) 

then the motion x = 0 is asymptotically y-stable uniformly in {to, x0). 
Proof. Inequalities (3.5) hold by hypothesis. Let e > 0 be given. If 6 (e) = b-l 

(a (E)), then for II x0 II < 6 

a ( II Y (c to, xo) II 1 d ‘v (t, x (t; to, x01) < J’ (to, m) Q b ( II m II 1-C = W 

l ) This means that for any e > 0 we can find 6 (8) > 0 such that 1 v’ (1, X) 1 < 8 follows 
from V (1, x) < e. 

7 The quantity D+V (t, x (t; to, ~0)) = lim [v (t + h, x (t + h; to, J(O)) - V (h x (t; :o, XO))] / h 
h-++n 

is Dini’s right upper-derived number 133. 341 of the function V (t, x (t; to, ~0)). 
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whence II y (t; lo, x0) II < e for r> r,. We set A0 = 8 (H). T (e) = b (A,) I c (6 (E)) and 
we let II x0 II< Ao, r. > 0. If we assume that Ilx (t; &,, x0) II >, 6 (e) for all f E (lo, to +T), 
then, by integrating (3.7) we obtain 

0 < b’ (to + T, x (to + T; to, xn)) < b’(to, xo) - c (8 (8)) 1’ < b (An) - c (6 (a)) T = 0 

which is impossible. Consequently, there exists an instant t, E (to, 2, + T) for which 

II x (1.; 10, xg) II < 6 (8). But in such a case 11 y (1; to, so) II < E for all t> 2, + T >‘r., 
which is what we had to prove. 

5. The ore m 2 1 [4]. In order for the motion x = 0 to be y-stable uniformly in 

i. and asymptotically y -stable, it is necessary and sufficient that there exist a funct- 

ion V (t, x) satisfying the hypotheses of Theorem 5 and Y (1, x (t; t,, x0)) J 0. 
Proof. 1) Sufficiency. The hypotheses of Theorem 5 are fulfilled. From V 1 0 

it follows that 11 y (1; to, x0) I/ - 0 as f - x if 11 x0 I/ is sufficiently small. 
2) Necessity. From the hypotheses it follows that there exists a function V (t, x) 

satisfying the hypotheses of Theorem 5. By the construction of the function V ([4], p. 29) 

and by virtue of the asymptotic y-stability, V (t, x (t; f,, x0)) I 0. 

6. We consider the application of the differential inequalities (see Sect, 2, subsection 

4). 
The ore m 2 2 [63. If a function V (1, X) exists satisfying inequalities (2.10) and (1.7) 

and, furthermore, if: 

1) the solution v = 0 of Eq. (2.11) is asymptotically stable, then the motion x = 0 
of system (1.1) is asymptotically y-stable; 

2) V satisfies inequality (1.10) and the solution v = 0 of Eq. (2.11) is asymptotically 

stable uniformly in {lo, v,), then the motion x = 0 of system (1.1) is asymptotically y 
-stable uniformly in (t,, x,1. 

Proof. 1) From (2.12) and (1.7) it follows that a (11 y (1; to, x0) 11) < v (t; 10, ~0). 

Since lim v (t; to, vo) = 0 as 2 - 00,also lim # y (t; to, x0) (1 = 0 if 11 x0 u is sufficiently 
. 

small 
2) Let ‘lo > 0 and 2’ (a (a)) = T (e) be the number appearing in the definition of the 

uniform asymptotic stability of the solution u = 0 of Eq. (2.11). We choose A0 > 0 

from the condition b (Ao) < ?h,. Then, for 11 x0 II< A,,, 1> to + T we have 

a ( [I Y (k to, x0) II) < v (t, x (C to, x0)) < v (1; to, Vi,) < n (4 

whence 0 y (t; 1,, x0) ]I < e. The theorem is proved. 
Let us consider a vector-valued function V (see Sect. 2, subsection 2). 

The ore m 2 3 [9& 1) If conditions I, II and 111-3) are fulfilled, then the motion 
x = 0 is asymptotically y-stable. 

2) If conditions I, II, 111-4) and IV are fulfilled, then the motion x = 0 is asymptot- 
ically y-stable uniformlyl in (to, x0!. 

Proof. 1) Since tliz zi w> (1, to, rso) = 0, then (1.3) follows from (2.23) if 1 x0 1 

is sufficiently small. + ’ 
2) In this case relation (1.3) is fulfilled uniformly in {t,, x,,). The theorem is proved. 

7. In this subsection F(r) and V,,) denote the derivatives of the function V relative 

to systems (1.1) and (2.24) (see Sect. 2. subsection 6). 
Theo r e m 2 4 [Sj. If there exists a bounded function V (t, a) satisfying inequality 

(1.7) and the Lipschitz condition (2.25) and, moreover, if Vii, (2, x) < - c (11 x I]), then 
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we can find a function d (r) such that from the conditions (2.26) and (3.8). 

(3.6) 

follows the uniform in {lo, x,,) asymptotic Y-stability of motion x = 0 of system 

(2.24). 
Pr oo f. Under the conditions imposed on p we can construct [22] a function IV (t, x) 

such that 
W(t,O)=O0, ~~~Yll~~~~~,~~~il~il 

WC,) (6 4 < - w (t, xl (3.9) 

p (r) is a function of the type of a (r) ; furthermore, W satisfies a Lipschitz condition in 
x with a Lipschitz constant equal to unity. 

Hence, by virtue of (2.26) and (3.9) follows 

w<s, (C x) < - w (t9 xf + rp (t) d ( il Y II 1 

Let d (r) < Cp (r), 0 < C < ct. Then 

W(,) (C x) < I-- i + W Ml w (4 x) (3.10) 

On the basis of (3.8) and of item 2) of Theorem 23, from (3.10) we conclude that the 
motion x = 0 of system (2.24) is asymp~tically y-stable uniformly in ilo, x3. The 
theorem is proved. 

8. Let us consider criteria based on functions having a sign-constant derivative f20, 

29. 35, 281. In this subsection we assume that system (1.1) is autonomous and, conse - 
quently, its solutions possess the group property 

x (C to, x0) = x It + z; tn + ?* x0) (3.11) 

and, moreover, that all its solutions starting in some neighborhood of the point x = 0 
are bounded. 

Theorem 25 [lo, 13, X4]. Ifafunction V(X) issuchthat V(x)>u(IlyH),while 
e satisfies condition (2.29) where M is the set of points {x} not containing entire tra- 

jectories, and furthermore if x = 0, then the motion x I 0 is asymptotically y-stable. 

Proo f [lo, 141. Having been given a number a, 0 < 8 < H, we choose 6 (a) > 0 
in accordance with item 2) of Theorem 1, Let us show that from 11 x0 fJ < 6 it follows 
that lim V (x (t; t,,, x,)) = 0 as t---f ~3. Assuming that this is false, by virtue of Y’ < 0 
we obtain 

v (x (C to, x0)) > v, > 0 (3.12) 

The solution x (I; f,,, xJ, being bounded by hypothesis, has a limit point x,: x (r, + kv; 
to, x0) ---, x,, k= k,, &, ka ,..., & + w, a = cmst > 0; by the continuity of V (x*) = V,. 
Since the solution x (t; to, x,)does not lie wholly in the setM,for some T > to we have 

V (x (T; &, x+)) < V,. Since x (t, + kr; r,, x0) -t x*, by the theorem on the continuous 
dependence of a solution on the initial conditions and by virtue of the continuity of fun- 
ction V there exists for the number 2’ > 0 and N > 0 such that from & > N follows 

v (x (T; to, x (to + kir; to, xo))j < V, (3.13) 

From (3, Xl) and from the property of uniqueness of (2.6) follows: 
(3.14) 

x (2’; to., x (to + k,t; tn, xo)) = x (T + k,s; to -t_ kir, x (to + kit; t,, xo)) = x (T+ k,r; to, xo) 

Substituting (3.14) into (3.13) we obtain V (K (2’ + kiz; to, x@)) < V,,which contradicts 
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(3.12). Thus, V, = 0, which is what we had to prove. 
Note. It can be shown [15] that when the hypotheses of Theorem 25 are fulfilled 

the asymptotic y-stability is uniform in {to, xJ. 

Theorem 26 p3]. If a function V (x) is such that V(X) > CI (11 y //),whileV’satisfies 

condition (2.29) and moreover the set (x: y = 0) is invariant while M \ {x: y = 0) 

does not contain entire trajectories, then the motion x = 0 is asymptotically y-stable. 

The proof [13] is based on the properties of the o-limit points of dynamic systems 
and is carried out according to the same plan as for the proofs of Theorems 11 and 12. 

9. The ore m 2 7 [9]. If there exists a function V (1, x) satisfying conditions (1.7) 
and (2.5) (in the sense of Definition 3) in the region (1.4) and if for any t, > 0, h > 0 
we can find M (to, h) > 0 such that 

II Y (t, x) II i AI for (r, X)E E (to, h) (3.15) 

then the motion x = 0 is asymptotically y-stable in-the-large. 

Proof. The conditions of item 1) of Theorem 1 are fulfilled, therefore we need to 
prove only that lim 11 y (1; t,, x0) II= 0 as 1-f m for any x0 and t, >, 0. Assume the con- 

trary: let there exist a number I > 0 and a sequence tlr -+ W, tk - t&l > a > 0, k = 
=123 , , ,...,such that jIy(tk; to, x*)l(>Z for some x* and to> 0. We denote I/x* II = h; 
from (3.15) there follows the existence of a number p, 0 < fl< CC/~, such that 11 y (t;t,, 

x*) ]I > I / 2 when 1 E [tk - p, tk f PI, k = 1, 2, 3 ,... . By virtue of (2.5), from (2.2) 

follows k $fP 

0 < v @k + ,k x (t,$ + 8; ‘0, ‘*)I < v to*x*))+rJ ( J V’ (t, x (z; to, x*)) dz < 
i=t fi-+ 

Q V (rn, x*) - 2k13c (1 I2) 

which is impossible for k sufficiently large. The theorem is proved. 
Condition (3.15) permits us to relinquish the requirement of a strong infinitesimal 

upper bound and of an infinite lower bound @5] for the function V, however, in this case 
the uniformity of the asymptotic y-stability is not guaranteed. For comparison we offer 

the following generalization of the theorem appearing in C20, 36, 37, 291 on asymptotic 
stability in-the-large: 

Theorem 28 (*). Ifa function 
and (3.3) and, moreover, if 

T’(t, x) Z + 

p exists in region (1.4). satisfying conditions (3.2) 

k 

(3.16) 

then the motion x = 0 is asymptotically y -stable in-the-large; here 1 y (2; t,, x0) Ij -t 0 

as t- 00 uniformly in 

(1, z 0, (ZlO,..., z+n) E K, I zjo ( < + 00 (j = k + i,..., n)lv 

where K is an arbitrary compacturn of the space {or,..., Sk}, the solution of system (1.1) 
possesses property (A), and 

xi (t, 0, . . . (0, Zktl, . . . , xn) f 0 (i = 1, . , k) (3.17) 

Proof. The asymptotic y -stability, property (R) and identity (3.17) follow from 
Theorems 16 and 17. Let compacturn K be given. We denote 

l ) This theorem has been proven by A. S. Oziraner. 
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By virtue of (3.16) there exists R > 0 such that 

k 

Consequently, R 
2 xi2 (t; tot x0) < f% for t >, tn 

i=l 

if to),U,(Xio,... ,ZK[))~K1 I"joI<O" (i=k+l,.",n)' 

From the conditions imposed on the function V it follows (c. f. items 2) and 3) of 
Theorem 1) that for any a > 0 we can find 6 (e) > 9 such that 11 y (t; to, x,1 ]I< E for 
all t> to if only 

to&O, i; Zi2<67 IZj,[<W fi=li+l,...,n) 
i=l 

We set T(e) = 2bo / c (6 (8)) and we let @I~, , . . , zko) E K. If we assume that 

i 5: (1; to, x0) > 6” (e) for t E (to, to + T) 
i=l 

then from (9.3) we obtain 

0 < v (to + T, x (to + T; lo, so)) < V (to, x0) - c (S (e)) T Q bo - e (S (a)) T < 6 

which is impossible. Consequently, there exists an instant 2, E (to, to + T) for which 

2 “iz(t*;to,xo)<6~(e) 
i=l 

But then II y (t; to, XO) I] < e for t > to + T > t,. The theorem is Droved. 
No te . If in Theorems ‘25 and 26 we additionally require II. (iI Y 11) + ~0 as 1 Y I--) 03* 

then the motion x = 0 is asymptotically Y -stable in-the-large 1131. 

1 0. Let there be given the system of equations of perturbed motion of a controlled 

system 
x = x (t, x, u) (u=(U1,...rUr)) (3.18j 

whose right-hand sides are defined and are continuous in the region 

t&O, llYlldH>% 9bllzll<+=r Odllull<+~ (3.19) 

We seek u in the form u = u (L, x); here it is assumed that the function u (t, x) is defi- 

ned and is continuous in region (1.2), while for u = u (f, x) the system (3.18) satisfies 
restrictions imposed on system (1.1) and in addition 

x (t, 0,O) 55 0, u(t,O)rQ 

The control performance index is taken to be the condition that the integral 
00 

J - w(t,xItl,u[tl)dt 
s 

is minimum. Here o (t, x, u) >, o is 9 scalar function continuous in region (3.19). x ftJ 
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is the solution of system (3.18) for n = u (t, x), u [t] = u (1, x It]). The optimal y - 
stabilization problem [lo, 321 consists of finding the function u = u” (t, x) which ensures 
the asymptotic y-stability of the motion x = 0, where the inequality 

m 

s 
o(t,x”[t],u’[t])dt~ o&x* [t],u* [t])dt 

s 
to to 

for I, > 0, 11 x [ t,J 11 < h, 3, = con& > 0,must be satisfied for any other function u = u* 
(t, x) having the same property. We introduce the notation [35] 

B [V, t, x, u] = xi (t, x, u) $ 0 (h x, u) (3.20) 

Th eo r e m 2 9 [lo, 35% If there exist a function Ire (I, x) satisfying inequalities 

(1.7) and (1.8) (respectively, inequalities (X.7) and (1.10)) and a function u = u” (t, x) 
for which: 

1) W (t, x) E - 0 (t, x, u‘ (t, x)) < - c ( II Y II 1 (respectively, W (t, X) s - 0 (t, xI u” 

(k x)) d - c (II x II IJ 

2) B [V”, t, x, us (t, X)] = u; 

3) B[~‘,t,x,u]>Oforany U, 

then the funerron u=u” f&x) solves the optimal y-stabilization problem, Here 

P 

.i 0 (t, x0 It],u” [t]), dt = min j: 0 (t, x [t], u ft]) dt = V” (to, x [to]) (3.21) 

6 to 
Proof. From (3.20) and condition 2) of the theorem it follows that V”’ = W relative 

to the system x’ = X (t, x, uc (t, x)). Therefore, all the hypotheses of Theorem 16 are 

fulfilled for k = rfi {respecnvely, for k = n)._ Let us prove’relation (3.21). By integrat- 
ing the equalitv dV” (t, x” It]) / dt = - o (1, x- it], u” ft]) and taking into account that 

lim V” (1, x0 It]) =0 as t--, 00~ we obtain 

1’” (to,xO [to])= J 0(1,x0 [t],u” [tl)dt (3.22) 

0 

By virtue of condition 3) of the theorem the inequality dP* (t, x* Et])/ dt < - 0 (tl I* 
it]) is valid for every function u = n+ (i, x) ensuring the asymptotic y-stability of the 
motion x = 0 ; by integrating this inequality and taking into account that lim v” (t, 
x* [t]) = 0 as t ---) 00 we obtain 

I’” (to, x* [to]) Q 5 0 (t, x* [G u* ttl)dt (3.23) 

to 

fx* 1 to] = x“ ~t,j). Then, (3. ‘21) follows from (3.22) and (3. d3), which is what we had 

to prove. 
This result generalizes a theorem appearing in 1351. Supplement IV. One of the me- 

thods for solving the optimal stabilization problem was proposed in [32]. 

11. Only the first steps have been taken in the y -stability problem in the linear 
approximation [ll]. In this subsection we take V’ (t, x) = {o’ V (% X kG t, X))it=t* 

At first we consider the linear system 

y’ = .*l (t) y + B (t) z;, 2’ = c (t) y _t- /I (t) z (3.24) 

in which A, B, C, D are matrix-valued functions of appropriate orders, continuous for 
120. It is known that any solution x = x (t; 1,. x0) of system (3.84) is defined for 



Method of Llapunov functions In a stability problem 359 

Theorem 30 [II]. The motion x = 0 of system (3.24) is exponentially asympto- 
tically Y -stable if and only if there exrsts a function Y (t, xl satisfying the conditions 

II Y II < V (k x1 G M ( II Y II + II a II I (3.25) 

I V (6 9 - Y P, ~‘1 I G M ( II Y - Y’ II + II z - z’ It, (3.26) 

y’ (t, x) < - &V (t$ x) (3.27) 
Proof. 1) Sufficiency. Integrating(3.27) we obtain 

v (t, x (t; to, x0}) < V @a, x0) exp I-e (t - lofl (3.28) 

By virtue of inequalities (3.25), 
[I y (t; to, x0) II q v (4 x vi for WI)) (3.29) 

V (to, xo) Q M t II YO II + ll zo II ) (3.30) 

Then, (1.5) follows from (3.28) - (3.30). 
2) Necessity. Suppose that (1.5) holds. We set 

V(I,xf=snpI/IY(t+z;t,xffjexp(ut): r;;SOj (3.31) 

Obviously, V (I, x) & 1 y 11. By virtue of (I. S), from (3.31) it follows that 

V (& x) d M (II Y II + ii z II ) 

Since x (2; to, x0) depends linearly on x0, 

y (2 + r; rr Xl - y (t + 2; t, x’) = y (t + r; 1, x - x ‘1 

Consequently, 

I v @. x) - ~i~*~‘~Id~~PtIIY~~+~~~t~-~‘fIjexP~az)j~EM(IlY-Y’~JfIlz-z’l~) 
t>c 

Further, we have 

V (t + h, x (t + h; t, x)) = m+$ [ II Y (t + h + t; t + k x (t + hi t, xl) II exP WI = 

= f;f [ ll Y (t + h + r; 8, xl II & @@I = 
, 

f;i [ II Y 0 -I- c 6 x) II exp (a$ exp (- WI d 

Q :;$ [ [I y (1 + z; t, X) 11 exp la&& (- a41 = Y (k x1 exp k-- ah) 
/ 

Consequently, 

$[V~~+h,xfL+h;t,x~)-~~(t,x)~~~~exp(-ah~--11V(t,x~ (3.32) 

whence (3.27) follows as h - + 0 . Note that the function V (2, x) is continuous. Indeed, 

1 Y (t + h, x’) - v (t, x) 1 d ! v (t + h, x’) - ‘v 0 + hl x) I + 

+lv(1+h,x)-~(t~h,x(t+h;f,xf)~+~V~~+~r~~~+~~~,~~~--V~~~~I 

The first two terms on the right-hand side tend to zero as h -, 0, i x - x’ I-. 0 since V 
satisfies a Lipschitz condition, the last term tends to zero by virtue or (3.32). The the- 

orem is proved. 
We now consider the perturbed system 

Y’=A(l)YfB(t)z+f(t,Ytz), z’=C(t)y+D(t)z+g(t,y,z) ,.3X\ 

We assume that the functions f and g satisfy a Lipschitz condition in (y, x).\\f (t, O,OIll -k 

t ~lg~~,~,~~l~~~ and 
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llf (4 Y. 2) II + II!!3 @F YI 2) II < 0 (6 II Y ii 1 (3.34) 

moreover, the function 0 (1, U) is continuous for 1> 0, u 2 0, locally satisfies a Lips - 
chitz condition in u ,and does not decrease with respect to U, w (t, 0) = 0. YI1, and Ii(,)- 
be the derivatives of the function P relative to systems (3.34) and (3.33). 

Theorem 31 [Ill. Let the motion x = 0 of system (3.24) be exponentially asym- 

ptoticaliy y-stable. If inequality (3.34) is fulfilled, then the Y -stability of the motion 
x = 0 of system (3.33) is of the same nature as the stability of the solution u = 0 of 

the comparison ewa tion 
u’ = - czu + N 0 (t, u) (3.35) 

Proof. By Theorem 30 there exists a function V (t, x) satisfying the conditions (3.25) 
- (3.27). For this function 

whence, making use of the inequality I’> )I ~11, we obtain 

I$,) (t, x) Q - uv jt, x) + fl4Q.l (h v (t, x)) 

Consequently, V (1, x (t; 1,, x6)) < u (2; f,, I.+,) follows from I’ (1,, x0) B no whence 

I Y (t; 10, x0) Ii 6 = (1; $0, ~1, which proves the theorem. 
For example, if the solution u = 0 of Eq. (3.35) is exponentially asymptotically sta- 

ble, then the motion x = 0 of system (3.33) is exponentially asymptotically y-stable. 
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